(6 2l by le canid alids oo aul>

B o3ls IS g slol e
o ools IS piids ad>

Intro to Apache Hadoop

By: Shahab Safaee
Computer Software Engineering PhD

Email: safaee.shx@gmail.com

h cibtrc.ir

O t.me/cibtrc
= 5 [G) www.instagram.com/cibtrc/

mailto:safaee.shx@gmail.com

R —— |
Agenda

e Introduction

« Fast Historical Facts

« Evolution of the Hadoop

« Apache Hadoop

- Difference between Hadoop 1 and Hadoop 2
- Hadoop 3 Benefits

« Hadoop Framework

- Hadoop Ecosystem

- MapReduce Paradigm

- Hadoop Execution Engine

- MapReduce Word Count Process

Introduction

« Apache Hadoop is a processing framework that exclusively
provides batch processing.

« Hadoop was the first big data framework to gain significant
traction in the open-source community.

T |

Fast Historical Facts (1)

« The code that eventually become Hadoop was written by Doug
Cutting and Mike Cafarella, open source developers working in the
search tech community, as part of Nutch project.

« "Hadoop” was the name of a yellow toy elephant owned by the son
of Doug Cutting. Cutting's son, then 2, was just beginning to talk
and called his beloved stuffed‘ yellow elephant "Hadoop".

|

Fast Historical Facts (2)

 Yahoo! Was the first user of Hadoop in large-scale production, and
cutting did early work on Hadoop there.

« In 2006, Hadoop was released by Yahoo and today is maintained
and distributed by Apache Software Foundation (ASF).

« Eventually, Cutting joined Cloudera as its cheief architect and
remains there to this day.

Evolution of the Hadoop

Doug Cutting & Mike

Google released paper on Google releases another paper on

Cafarella started to work
on Apache Nutch Project

GFS to describe how to
store large datasets

MapReduce techinique which describe
processing of large datasets

2002

2003

2004

2007[

2006

2005

Doug Cutting split out the
distributed computing parts
from Nutch and created
HADOOP

Doug Cutting found some
limitation in Nutch and
joined Yahoo along with
Nutch

Doug Cutting started to
use GFS & Mapreduce
in Nutch

Januray 2008

July 2008

2009

Yahoo successfully
tested Hadoop on 1000 node
cluster

Yahoo released Hadoop
as an open source project to
ASF(Apache Software
Foundation)

Hadoop was successfully
tested to sort a PB
(PetaByte) of data in

less than 17 hours

{ 2017

Apache Hadoop
version 3.0

2011

Apache Software
Foundation released
Apache Hadoop Version 1.0

N
Apache Hadoop (1)

« Modern versions of Hadoop are composed of several components or
layers, that work together to process batch data:

> HDFS:

- HDFS is the distributed file system layer that coordinates storage and
replication across the cluster nodes.

- HDFS ensures that data remains available in spite of inevitable host failures

= YARN:

- YARN, which stands for Yet Another Resource Negotiator, is the cluster
coordinating component of the Hadoop stack. It is responsible for
coordinating and managing the underlying resources and scheduling jobs to
be run.

= MapReduce:
- MapReduce is Hadoop's native batch processing engine.

-
Apache Hadoop (2)

« Apache Hadoop and its MapReduce processing engine offer a
well-tested batch processing model that is best suited for
handling very large data sets where time is not a significant
factor.

« The low cost of components necessary for a well-functioning
Hadoop cluster makes this processing Inexpensive and
effective for many use cases.

o Compatibility and integration with other frameworks and
engines mean that Hadoop can often serve as the foundation
for multiple processing workloads using diverse technology.

Difference between Hadoop 1 and
Hadoop 2

1. Components: In Hadoop 1 we have MapReduce but Hadoop 2 has YARN(Yet Another

Resource Negotiator) and MapReduce version 2.

HDFS HDFS

Map Reduce YARN / MRvZ

Difference between Hadoop 1 and
Hadoop 2

2. Daemons:
Namenode Namenode
Datanode Datanode
Secondary Namenode Secondary Namenode
Job Tracker Resource Manager

Task Tracker Node Manager

Difference between Hadoop 1 and
Hadoop 2

3. Working:

* |n Hadoop 7, there is HDFS which is used for storage and top of it, Map Reduce which
works as Resource Management as well as Data Processing. Due to this workload on

Map Reduce, it will affect the performance.
» |n Hadoop Z there is again HDFS which Is again used for storage and on the top of
HDFS, there is YARN which works as Resource Management. It basically allocates

the resources and keeps all the things going on.

HADOOP 1.0 HADOOP 2.0

MapReduce J Others

(data processing) (data processing)

\ | \ |

MapReduce YARN

(cluster resource management
& data processing)

(cluster resource management)

S ———

Difference between Hadoop 1 and
Hadoop 2

4. Limitations:

Hadoop Tis a Master-Slave architecture. It consists of a single master and multiple
slaves. Suppose if master node got crashed then irrespective of your best slave nodes,
vour cluster will be destroyed. Again for creating that cluster means copying system files,
image files, etc. on another system is too much time consuming which will not be
tolerated by organizations in today’'s time.

Hadoop 2 is also a Master-Slave architecture. But this consists of multiple masters (i.e
active namenodes and standby namenodes) and multiple slaves. If here master node got
crashed then standby master node will take over it. You can make multiple combinations
of active-standby nodes. Thus Hadoop 2 will eliminate the problem of a single point of
failure.

Hadoop 3 Benefits

L OV ()

o

Support Supports Storage
Support GPUs Multiple multiple overhead lntrgi-shll{nde
’ Standby NameNodes reduced from Balan
NameNodes for multiple 200% to 50%. 5
namespaces. =

b

Hadoop 2 vs Hadoop 3

Features
Min Java Version Required T Bva 8
Fault Tolerance Via replication Via erasure coding
Storage Scheme 3x replication factor for data reliability, Erasure coding for data reliability, 50% overhead
200% overhead
Yarn Timeline Service Scalability issues Highly scalable and reliable
Standby NN Supports only 1 SBNN Supports only 2 or more SBNN
Heap Management We need to configure HADOOP_HEAPSIZE Provides auto-tuning of heap

Hadoop Framework

HDFS Allows to dump any kind of data

(Storage) across the cluster

YARN Allows parallel processing of the

(FUESEEEIL), data stored in HDFS

HDFS Component

NameNode

« Master daemon

« Maintains and Manages DataNodes

DataNode

Secondary .
NameNode NameNode » Records metadata e.g. location of blocks stored,
the size of the files, permissions, hierarchy, etc.
4 N
e : N + Receives heartbeat and block report from all the
7 ~
7 : o DataNodes
I ~
~

I ~

I

I

I

DataNode

= Serves read and write requests

~\
~
N\
= Slave daemons
DataNode DataNode
= Stores actual data

R — 1
HDFS Component

HDFS Architecture
Metadata (Name, replicas, ...): ‘

Metada_ta . ops"{ Namenode /home/foo/data, 3, ...

Block ops
Re?d Datanodes % Datanodes
:) I,
= - Replication - EI
O “IBlocks
. ~ .)
Y v
Rack 1 Rack 2

Yarn Component

ResourceManager

+ Receives the processing requests

Resource
Manager

+ Passes the parts of requests to

corresponding NodeManagers

NodeManagers

~
N\
\
+ Installed on every DataNode
Manager EIETE) » Responsible for execution of task on

every single DataNode

7’
4
7/
Node
Manager

N

Yarn Component

D \ .
0)*" Apache Hadoop YARN-Architecture

Node
~*"| Manager
TP T LL T CTLL LT ETEUR! TEPEERt™ Sy ‘e
........... - ---.....,.
------ - e ——
o o i container G Master
. : - b
/", . Lol
. . -
client < : Lot —_—
= v . ‘
~ .- Node
~ = | L ems|em s == e =1
| -3 ‘b ‘ Manager
:L Resource <- Sa=

3 Resource [C=- =
= S k\ ... w @
) - Master As

s AT

 ———

‘ Manager

Map Reduce Status
Job Submission

Node Status

Resource Request

e — 0 |

Map/Reduce Component

Hadoop Ecosystem

31015 Jeuwn|o) |bsoN

-
U
1
11
14

edureka!
‘Il
118
!
I
)}
W
1v]
(a8
I

Sundins

3id

MapReduce

SI8Qay yum asueydx3 eleq

| .
@
[+14]
m
c
m
=
@
(9]
.
=
O
(7]
@
o
| .
Q
=
v
=
o
=
<
>

8u1s0000.d eieq aeds 28.1e

mﬁcnm yJeds

HDFS Hadoop Distributed File System

\lf 10S

10129||0)) rlEe(
awn|4

UOIBUIPJ00D)

19d33) 007

=

MapReduce Paradigm (1)

- MapReduce the current framework/paradigm for writing
data-centric parallel applications in both industry and
academia.

« MapReduce is inspired by the commonly used functions
- Map and Reduce in combination with the divide-and
conquer parallel paradigm.

 For a single MapReduce job, users implement two basic

procedure objects Mapper and Reducer for different
processing stages.

R —
MapReduce Paradigm (2)

« Then the MapReduce program 1is automatically
interpreted by the execution engine and executed in
parallel in a distributed environments.

- MapReduce is considered as a simple yet powertul

enough programming model to support a variety of the
data-intensive programs.

x5

MapReduce Paradigm (3)

Iteration - 1 Iteration - 2
HDFS || M1 |\ HDFS HDFS |, Rl HDFS

B read /|) N\write _read/ write
< > > ' o2

Dataon | M2 - Tuples R2 Tuples

Disk) (on Disk) (on Disk)

o gy s T
nput from A ©

stable

storage NS W

MapReduce Dataflow

Pre-loaded local
input data

Intermediate data
from mappers

Values exchanged
by shuffle process

Reducing process
generates outputs

Qutputs stored
locally

e —_

Node 1

V111117

Mapping process

0000

Node 2

TLLEIE]

Mapping process

0000

Node 3

TITILLs

Mapping process

0000

Node 1

93y

Reducing process

—

Node 2

9157y

Reducing process

—

Node 3

PPTES

Reducing process

—

-
MapReduce Features (1)

« Map and Reduce functions

= A MapReduce program contains a Map function doing the
parallel transformation and a Reduce function doing the
parallel aggregation and summary of the job.

» Between Map and Reduce an implied Shuffle step is

responsible for grouping and sorting the Mapped results
and then feeding it into the Reduce step.

-
MapReduce Features (2)

« Simple paradigm
= In MapReduce programming, users only need to write the
logic of Mapper and Reducer while the logic of shuffling,
partitioning and sorting is automatically done by the

execution engine.

» Complex applications and algorithms can be implemented
by connecting a sequence of MapReduce jobs.

N
MapReduce Features (3)

« Key-Value based
> In MapReduce, both input and output data are considered
as Key-Value pairs with different types.
= This design is because of the requirements of parallelization
and scalability.

= Key-value pairs can be easily partitioned and distributed to
be processed on distributed clusters.

o Parallelable and Scalable

= Both Map and Reduce functions are designed to facilitate
parallelization, so MapReduce applications are generally
linearly-scalable to thousands of nodes.

S |

The Programming Model Of MapReduce
(Map Phase)

OO0

shdsee

mp{ml-: v, in_value) -= (out_key, intermediate value

The Programming Model Of MapReduce
(Reduce Phase)

u e

reduce (out_key, intermediate value list) -=out_value list

o

Hadoop Execution Engine (1)

- Hadoop MapReduce

= Hadoop MapReduce is the core Hadoop ecosystem
component which provides data processing.

= MapReduce is a software framework for easily writing
applications that process the vast amount of structured and
unstructured data stored in the Hadoop Distributed File
system.

= MapReduce programs are parallel in nature, thus are very
useful for performing large-scale data analysis using
multiple machines in the cluster. Thus, it improves the
speed and reliability of cluster this parallel processing.

3

Hadoop Execution Engine (3)

- Hadoop MapReduce

» Hadoop is mainly implemented in Java, therefore, the map
and reduce functions are wrapped as two interfaces called
Mapper and Reducer.

» The Mapper contains the logic of processing each key-value
pair from the input.

= The Reducer contains the logic for processing a set of values
for each key.

o Programmers build their MapReduce application by
implementing those two interfaces and chaining them as an
execution pipeline.

MapReduce Word Count Process

Input Splitting Mapping Shuffling Reducing ﬁFinaI Result
List(K2,V2) K2,List(V2)

K1i,v1i
Deer, 1

Bear, 1
River, 1

Deer Bear River

Deer Bear River
Car Car River Car Car River
Deer Car Bear

Deer Car Bear

|

Word Count example in Hadoop

public void map(Object key.
Text value . Context context) {
String text = value.toString ():
StringTokenizer i1tr = new StringTokenizer(text):
while (1tr . hasMoreTokens()) |{
word . set(1tr.nextToken());
context.write (word., one);

}

public void reduce(Text key.
I[terable <IntWritable > values, Context context) |

int sum = 0;

for (IntWritable wval : values) |
sum += val.get();

|

result.set(sum):
context.write(key, result);

|

TapadhLeal Koszonam y 0 oo al]a"k == (i

Sy BIIZIIV[] WaadMahadsanlahay
TintKo ™= == I = Takk -

AsanteSana

brazie
= MBSIEhukIanaK..ms

Blagodaram £ .= = X Dziakuiy e

f—= Agvﬁu = |BX|B LIAKUU e, e
mg i y St e T GrahasA s~
fLILe 55““. 5 ;‘:: E’AGIU llhnn:ad%
Taiku ?‘cu =8 B lanemit “s Jenkl

Khuhﬁhaﬂ]

hnurakaluu

nanVa
akke

g

FEMercl
— IQ_DW

o I Cndingrgg P 0

bracieg =52 =S =5

Faleminderit == =260 N E’m:

[Ihanslu e — = L
Niringraziak Bayarlalaa .

8

EskerikAsko Dankewol

Dankie.
'E“x“’ === ES
0 u =S Gratiashgo = o
C/: =uamea ao

= KopKh Kh
ahHamm sg

=| Mullumesc u=
o lim

=<(
oo -

[HG

A
=

Salamal

s

llhnuadu

