
Hadoop Distributed File System

(HDFS) Architecture

By: Shahab Safaee

Software Engineering PhD

Email: safaee.shx@gmail.com

 cibtrc.ir

 t.me/cibtrc

 www.instagram.com/cibtrc/

mailto:safaee.shx@gmail.com

Agenda
• Basic Features: HDFS

• Fault tolerance

• Data Characteristics

• HDFS Architecture

• The Communication Protocol

• Robustness

• Data Organization

• API (Accessibility)

2

Basic Features: HDFS

3

• Highly fault-tolerant

• High throughput

• Suitable for applications with large data sets

• Streaming access to file system data

• Can be built out of commodity hardware

Fault tolerance

4

• Hardware failure is no more exception

• A HDFS instance may consist of thousands of server
machines, each storing part of the file system’s data.

• Since we have huge number of components and that
each component has non-trivial probability of failure
means that there is always some component that is non-
functional.

• Detection of faults and quick, automatic recovery from
them is a core architectural goal of HDFS.

Data Characteristics (1)

5

• Streaming data access
▫ Applications need streaming access to data

▫ The force is on high throughput of data access rather than low latency of
data access.

▫ It focuses on how to retrieve data at the fastest possible speed
while analyzing logs.

Data Characteristics (2)

6

• Large datasets
▫ Applications that run on HDFS have large data sets.

▫ A typical file in HDFS is gigabytes to terabytes in size.

▫ High aggregate data bandwidth

▫ Scale to hundreds of nodes in a cluster

▫ It should support tens of millions of files in a single instance.

• One Write/Many Read Access
▫ a file once created, written and closed need not be changed

▫ A Map/Reduce application fits perfectly with this model.

▫ There is a plan to support appending-writes to files in the future.

Data Characteristics (3)

7

• Moving computation vs Moving data
▫ A computation requested by an application is much more efficient

if it is executed near the data it operates on.

▫ This is especially true when the size of the data set is huge.

▫ The main advantage is that this increases the overall throughput
of the system.

▫ It also minimizes network congestion.

• Portability across heterogeneous hardware and software
platforms
▫ HDFS is designed with portable property to be portable from one

platform to other.

▫ This enables widespread adoption of HDFS.

▫ It is the best platform while dealing with a large set of data.

HDFS Architecture (1)

8

 Master/slave architecture

 HDFS cluster consists of a single Namenode, a master server that
manages the file system namespace and regulates access to files by
clients.

 There are a number of DataNodes usually one per node in a cluster.

 The DataNodes manage storage attached to the nodes that they run
on.

 HDFS exposes a file system namespace and allows user data to be
stored in files.

 A file is split into one or more blocks and set of blocks are stored in
DataNodes.

 DataNodes: serves read, write requests, performs block creation,
deletion, and replication upon instruction from Namenode.

HDFS Architecture (2)

9

 Namenode

B
replication

Rack1 Rack2

Client

Blocks

Datanodes Datanodes

Client

Write

Read

Metadata ops
Metadata(Name, replicas..)
(/home/foo/data,6. ..

Block ops

File system Namespace

• Hierarchical file system with directories and files

• Create, remove, move, rename etc.

• Namenode maintains the file system

• Any meta information changes to the file system recorded by the
Namenode.

• An application can specify the number of replicas of the file needed:
replication factor of the file. This information is stored in the
Namenode.

10

Data Replication

11

• HDFS is designed to store very large files across machines in a large
cluster.

• Each file is a sequence of blocks.

• All blocks in the file except the last are of the same size.

• Blocks are replicated for fault tolerance.

• Block size and replicas are configurable per file.

• The Namenode receives a Heartbeat and a BlockReport from each
DataNode in the cluster.

• BlockReport contains all the blocks on a Datanode.

Replica Placement (1)

12

• The placement of the replicas is critical to HDFS reliability and
performance.

• Optimizing replica placement distinguishes HDFS from other
distributed file systems.

• Rack-aware replica placement:

▫ Goal: improve reliability, availability and network bandwidth utilization

▫ Research topic

• Many racks, communication between racks are through switches.

• Network bandwidth between machines on the same rack is greater
than those in different racks.

• Namenode determines the rack id for each DataNode.

Replica Placement (2)

13

• Replicas are typically placed on unique racks

▫ Simple but non-optimal

▫ Writes are expensive

▫ Replication factor is 3

▫ Another research topic?

• Replicas are placed: (Rack Awareness Algorithm)

▫ one on a node in a local rack, one on a different node in the local rack
and one on a node in a different rack.

• 1/3 of the replica on a node, 2/3 on a rack and 1/3 distributed evenly
across remaining racks.

Replica Placement (3)

14

Replica Selection

15

• Replica selection for READ operation: HDFS tries to minimize the
bandwidth consumption and latency.

• If there is a replica on the Reader node then that is preferred.

• HDFS cluster may span multiple data centers: replica in the local
data center is preferred over the remote one.

Safemode Startup

16

• On startup Namenode enters Safemode.

• Replication of data blocks do not occur in Safemode.

• Each DataNode checks in with Heartbeat and BlockReport.

• Namenode verifies that each block has acceptable number of
replicas

• After a configurable percentage of safely replicated blocks check in
with the Namenode, Namenode exits Safemode.

• It then makes the list of blocks that need to be replicated.

• Namenode then proceeds to replicate these blocks to other
Datanodes.

Filesystem Metadata

17

• The HDFS namespace is stored by Namenode.

• Namenode uses a transaction log called the EditLog to record every
change that occurs to the filesystem meta data.

▫ For example, creating a new file.

▫ Change replication factor of a file

▫ EditLog is stored in the Namenode’s local filesystem

• Entire filesystem namespace including mapping of blocks to files
and file system properties is stored in a file FsImage. Stored in
Namenode’s local filesystem.

Namenode

18

• Keeps image of entire file system namespace and file Blockmap in
memory.

• 4GB of local RAM is sufficient to support the above data structures
that represent the huge number of files and directories.

• When the Namenode starts up it gets the FsImage and Editlog from
its local file system, update FsImage with EditLog information and
then stores a copy of the FsImage on the filesytstem as a checkpoint.

• Periodic checkpointing is done. So that the system can recover back
to the last checkpointed state in case of a crash.

Datanode

19

• A Datanode stores data in files in its local file system.

• Datanode has no knowledge about HDFS filesystem

• It stores each block of HDFS data in a separate file.

• Datanode does not create all files in the same directory.

• It uses heuristics to determine optimal number of files per directory
and creates directories appropriately

• When the filesystem starts up it generates a list of all HDFS blocks
and send this report to Namenode: Blockreport.

The Communication Protocol

20

 All HDFS communication protocols are layered on top of the TCP/IP
protocol

 A client establishes a connection to a configurable TCP port on the
Namenode machine. It talks ClientProtocol with the Namenode.

 The Datanodes talk to the Namenode using Datanode protocol.

 RPC abstraction wraps both ClientProtocol and Datanode protocol.

 Namenode is simply a server and never initiates a request; it only
responds to RPC requests issued by DataNodes or clients.

Robustness :

Objectives

21

• Primary objective of HDFS is to store data reliably in the presence of
failures.

• Three common failures are: Namenode failure, Datanode failure
and network partition.

Robustness:

DataNode failure and heartbeat

22

• A network partition can cause a subset of Datanodes to lose
connectivity with the Namenode.

• Namenode detects this condition by the absence of a Heartbeat
message.

• Namenode marks Datanodes without Hearbeat and does not send
any IO requests to them.

• Any data registered to the failed Datanode is not available to the
HDFS.

• Also the death of a Datanode may cause replication factor of some of
the blocks to fall below their specified value.

Robustness:

Re-replication

23

• The necessity for re-replication may arise due to:

▫ A Datanode may become unavailable,

▫ A replica may become corrupted,

▫ A hard disk on a Datanode may fail, or

▫ The replication factor on the block may be increased.

Robustness:

Cluster Rebalancing

24

• HDFS architecture is compatible with data rebalancing schemes.

• A scheme might move data from one Datanode to another if the free
space on a Datanode falls below a certain threshold.

• In the event of a sudden high demand for a particular file, a scheme
might dynamically create additional replicas and rebalance other
data in the cluster.

• These types of data rebalancing are not yet implemented:

▫ research issue.

Robustness:

Data Integrity

25

• Consider a situation: a block of data fetched from Datanode arrives
corrupted.

• This corruption may occur because of faults in a storage device,
network faults, or buggy software.

• A HDFS client creates the checksum of every block of its file and
stores it in hidden files in the HDFS namespace.

• When a clients retrieves the contents of file, it verifies that the
corresponding checksums match.

• If does not match, the client can retrieve the block from a replica.

Robustness:

Metadata Disk Failure

26

• FsImage and EditLog are central data structures of HDFS.

• A corruption of these files can cause a HDFS instance to be non-
functional.

• For this reason, a Namenode can be configured to maintain multiple
copies of the FsImage and EditLog.

• Multiple copies of the FsImage and EditLog files are updated
synchronously.

• Meta-data is not data-intensive.

• The Namenode could be single point failure: automatic failover is
NOT supported! Another research topic.

Data Organization:

Data Blocks

27

• HDFS support write-once-read-many with reads at streaming
speeds.

• A typical block size is 64MB (or even 128 MB).

• A file is chopped into 64MB chunks and stored.

Data Organization:

Staging (1)

28

• A client request to create a file does not reach Namenode
immediately.

• HDFS client caches the data into a temporary file. When the data
reached a HDFS block size the client contacts the Namenode.

• Namenode inserts the filename into its file system hierarchy and
allocates a data block for it.

• The Namenode responds to the client with the identity of the
Datanode and the destination of the replicas (Datanodes) for the
block.

• Then the client flushes it from its local memory.

Data Organization:

Staging (2)

29

• The client sends a message that the file is closed.

• Namenode proceeds to commit the file for creation operation into
the persistent store.

• If the Namenode dies before file is closed, the file is lost.

• This client side caching is required to avoid network congestion

Data Organization:

Replication Pipelining (1)

30

• When the client receives response from Namenode, it flushes its
block in small pieces (4K) to the first replica, that in turn copies it
to the next replica and so on.

• Thus data is pipelined from Datanode to the next.

Data Organization:

Replication Pipelining (2)

31

Data Organization:

Replication Pipelining (3)

32

Data Organization:

Replication Pipelining (4)

33

Data Organization:

Read Operation

34

Application Programming Interface

35

• HDFS provides Java API for application to use.

• Python access is also used in many applications.

• A C language wrapper for Java API is also available.

• A HTTP browser can be used to browse the files of a HDFS instance.

FS Shell, Admin and Browser

Interface

36

• HDFS organizes its data in files and directories.

• It provides a command line interface called the FS shell that lets the
user interact with data in the HDFS.

• The syntax of the commands is similar to bash and csh.

• Example: to create a directory /foodir

/bin/hadoop dfs –mkdir /foodir

• There is also DFSAdmin interface available

• Browser interface is also available to view the namespace.

Space Reclamation

37

• When a file is deleted by a client, HDFS renames file to a file in be
the /trash directory for a configurable amount of time.

• A client can request for an undelete in this allowed time.

• After the specified time the file is deleted and the space is reclaimed.

• When the replication factor is reduced, the Namenode selects excess
replicas that can be deleted.

• Next heartbeat(?) transfers this information to the Datanode that
clears the blocks for use.

Reference

38

• The Hadoop Distributed File System: Architecture and Design by
Apache Foundation Inc.

http://hadoop.apache.org/core/docs/current/hdfs_design.html
http://hadoop.apache.org/core/docs/current/hdfs_design.html
http://hadoop.apache.org/core/docs/current/hdfs_design.html
http://hadoop.apache.org/core/docs/current/hdfs_design.html
http://hadoop.apache.org/core/docs/current/hdfs_design.html
http://hadoop.apache.org/core/docs/current/hdfs_design.html

39

