Intro to Big Data

By: Shahab Safaee

Software Engineering PhD Candidate

Agenda

- Introduction
- What is Big Data?
- Big Data Sources
- Why Big Data
- Characteristic of Big Data
- Big Data Paradigm
- Big Data History
- Big Data Use Cases
- Big Data Investment-by Industry
- Big Data Anatomy and Stack Layers
- Hadoop Ecosystem
- Big Data Frameworks
- Integrated Cloud & Big Data

Introduction (1)

Data

 In computing, data is Information that has been translated into a form that is efficient for movement or processing.

Operations

- Generating and Consuming
- Processing
- Store
- Retrieval

Introduction (2)

Traditional Paradigm

Few companies are generating data, all others are consuming

data

- New Paradigm
 - all of us are generating data, and all of us are consuming data

Who's Generating Data

(all of us are generating data)

Scientific instruments (collecting all sorts of data)

Mobile devices
(tracking all objects all the time)

Sensor technology and networks
(measuring all kinds of data)

- The progress and innovation is no longer hindered by the ability to collect data
- But, by the ability to manage, analyze, summarize, visualize, and discover knowledge from the collected data in a timely manner and in a scalable fashion

What is Big Data? (1)

- Walmart handles more than 1 million customer transactions every hour.
- Facebook handles 40 billion photos from its user base.

What is Big Data? (2)

- No single standard definition...
- "Big Data" is similar to 'small data', but bigger in size
 - but having data bigger it requires different approaches:
 - Techniques, tools and architecture
- "Big Data" is data whose scale, diversity, and complexity require new architecture, techniques, algorithms, and analytics to manage it and extract value and hidden knowledge from it...
- an aim to solve new problems or old problems in a better way
- Big Data generates value from the storage and processing of very large quantities of digital information that cannot be analyzed with traditional computing techniques.

What is Big Data? (3)

Big Data Sources

Users

Application

Systems

Sensors

Large and growing files (Big data files)

Why Big Data (1)

Source: Cisco IBSG, April 2011

Why Big Data (2)

- Growth of Big Data is needed
 - Increase of storage capacities
 - Increase of processing power
 - Availability of data(different data types)
 - Every day we create 2.5 quintillion (10¹⁸) bytes of data; 90% of the data in the world today has been created in the last two years alone
- FB generates 10TB daily
- Twitter generates 7TB of data Daily
- IBM claims 90% of today's stored data was generated in just the last two years.

Characteristic of Big Data

1st Character of Big Data: Volume (Scale) (1)

- Data Volume
 - 44x increase from 2009 2020
 - From 0.8 zetta bytes to 35zb
- Data volume is increasing exponentially

1st Character of Big Data: Volume (Scale) (2)

- A typical PC might have had 10 gigabytes of storage in 2000.
- Today, Facebook ingests 500 terabytes of new data every day.
- Boeing 737 will generate 240 terabytes of flight data during a single flight across the US.
- The smart phones, the data they create and consume.
- sensors embedded into everyday objects will soon result in billions of new, constantly-updated data feeds containing environmental, location, and other information, including video.

2st Character of Big Data: Velocity (Speed) (1)

- Data is begin generated fast and need to be processed fast
- Online Data Analytics
- Late decisions \rightarrow missing opportunities
- Examples
 - E-Promotions: Based on your current location, your purchase history, what you like → send promotions right now for store next to you
 - Healthcare monitoring: sensors monitoring your activities and body ⇒ any abnormal measurements require immediate reaction

2st Character of Big Data: Velocity (Speed) (2)

- Clickstreams and ad impressions capture user behavior at millions of events per second
- high-frequency stock trading algorithms reflect market changes within microseconds
- machine to machine processes exchange data between billions of devices
- infrastructure and sensors generate massive log data in realtime
- on-line gaming systems support millions of concurrent users, each producing multiple inputs per second.

3st Character of Big Data: Variety (Complexity) (1)

- Various formats, types, and structures
- Text, numerical, images, audio, video, sequences, time series, social media data, multi-dim arrays, etc...
- Static data vs. streaming data
- A single application can be generating/collecting many types of data

To extract knowledge → all these types of data need to linked together

3st Character of Big Data: Variety (Complexity) (2)

- Big Data isn't just numbers, dates, and strings. Big Data is also geospatial data, 3D data, audio and video, and unstructured text, including log files and social media.
- Traditional database systems were designed to address smaller volumes of structured data, fewer updates or a predictable, consistent data structure.
- Big Data analysis includes different types of data

The Structure of Big Data

Big Data: 3V's (1)

Complexity

Big Data = Transactions + Interactions + Observations

Increasing Data Variety and Complexity

Source: Contents of above graphic created in partnership with Teradata, Inc.

Some Make it 4V's (1)

Some Make it 4V's (2)

Velocity Volume

Data at Rest

Terabytes to exabytes of existing data to process

Data in Motion

Streaming data, milliseconds to seconds to respond

Some Make it 5V's (1)

Big Data Paradigm

Big Data History

- Two major milestones in the development of Hadoop also added confidence into the Power of open source and Big Data Technologies.
- Only two years after its first release, in 2008, Hadoop won the terabyte sort benchmark in big data history. This is the first time that either a Java or an open source program has won.
- In 2010 Facebook claimed that they had the largest Hadoop cluster in the world with 21 PB of storage for their social messaging platform.

Big Data Use Cases (1)

- Financial services
 - 360-degree complete view of customer
 - Risk and fraud monitoring and management
 - Real-time transaction tracking and analytics
- Healthcare/Life sciences
 - Disease diagnosis analysis
 - Medical record text analysis
 - Genomic analytics
- Telecommunications
 - Real-time Call detail record CDR processing and analysis
 - Customer profile monetization and analysis
 - Real-time network element monitoring
 - Real-time Network fault analysis

Big Data Use Cases (2)

- Digital media
 - Real-time ad matching, analysis, and targeting
 - Website analytics and conversion tracking
- Retail
 - Cross-channel marketing
 - Customer Clustering and Segmentation
 - Click-stream analysis
 - Market Basket Analytics
 - Real-time Recommendation
 - Sentiment Analysis

Big Data Investment-by Industry

Harnessing Big Data

• OLTP: Online Transaction Processing (DBMSs)

• OLAP: Online Analytical Processing (Data Warehousing)

• RTAP: Real-Time Analytics Processing (Big Data Architecture &

technology)

Big Data Anatomy

Decreasing Data Size

Big Data Stack Layers

Application Layer

Big data applications and visualization of generated insights

Processing Layer

Big data analytics algorithms (e.g. Machine Learning, Clustering, Data Mining)

Big Data Storage Layer

Hadoop/HDFS, non-relational and new-relational systems, analytical databases, in-memory technologies and traditional relational systems

Big Data Technology Stack

Big Data File Systems

- Features
 - Efficient Massive Data Support
 - Distributed Storing and Retrieving in Multiple Machines
- Tools
 - HDFS
 - S3
 - GPFS

Big Data Database

- NoSQL Database
 - NoSQL describes a fairly large number of NoSQL database technologies.
 - NoSQL databases are non-relational, distributed and schema-free.
- NoSQL Data Models
 - Key-value
 - Column-family
 - Document Oriented
 - Graph Based

RDBMS vs Non-RDBMS

Big Data Execution Engine (1)

- Features
 - Scalable
 - Fault Tolerant
 - Parallelism
- Infrastructure Processing
 - Commodity Clustered Machines
- Programming Model
 - Divide and Conquer
- Programming Framework
 - Map/Reduce
 - It can model processing large data, split complications into different parallel tasks and make efficient use of large commodity clusters and distributed file systems.
- Tools
 - Hadoop Map/Reduce
 - Apache Spark

Big Data Query & Scripting Languages

- Features
 - High Level Language
 - Close to SQL Language
 - Translatable to Map/Reduce Functions
- Tools
 - Cassandra
 - Apache Hive
 - Apache Pig

Big Data Stream Processing

- Features
 - Fresh
 - Low Latency
- Tools
 - Storm
 - S4

Big Data Graph Processing

- Applications
 - Location Based Data
 - Social Networks
- Tools
 - Pregel
 - Apache Giraph
 - GraphLab
 - ...

Big Data Machine Learning

- Tools
 - Mahout
 - ML Base
 - **-** ...

Big Data Other Tools

Hadoop Technology Stack

Hadoop Ecosystem

Big Data Frameworks

- Open Sources
 - Apache Hadoop
 - Apache Spark
 - Apache Storm
 - Apache S4
- Commercials
 - Google Big Query
 - Amazon DynamoDB
 - Amazon Elastic MapReduce
 - Microsoft HDInsight Service

Integrated Cloud & Big Data

Big Data Cloud Reference Architecture

Big Data Analytics Software as a Service (Analytics Applications)

Big Data Platform as a Service (BPaaS) (Data Platform APIs, Scheduling, Analytics

Programming Environment etc.)

 $\widehat{\mathbb{I}}$

Big Data Fabric

(Big Data Management, Access and Aggregation)

Cloud Infrastructure (CI) (Compute, Storage and Network)

Big Data Cloud Layered Components

