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Relational databases

- Benefits of Relational databases:
» Designed for all purposes
= ACID
= Strong consistency, concurrency, recovery
» Mathematical background
» Standard Query language (SQL)
= Lots of tools to use with i.e: Reporting, services, entity frameworks,

= Vertical scaling (up scaling)
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ACID Theorem

Atomic:
= All of the work in a transaction completes (commit) or none of it completes
= All operations in a transaction succeed or every operation is rolled back.
Consistent:

= Atransaction transforms the database from one consistent state to another
consistent state. Consistency is defined in terms of constraints.

= On the completion of a transaction, the database is structurally sound.

Isolated:

s The results of any changes made during a transaction are not visible until the
transaction has committed.

= Transactions do not contend with one another. Contentious access to data is
moderated by the database so that transactions appear to run sequentially.

Durable:
= The results of a committed transaction survive failures

= The results of applying a transaction are permanent, even in the presence of
failures.



Era of Distributed Computing

But...

e Relational databases were not built for
distributed applications.

Because...

- Joins are expensive

- Hard to scale horizontally

- Impedance mismatch occurs

- Expensive (product cost, hardware
, Maintenance)
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Era of Distributed Computing

But...

« Relational databases were not built for
distributed applications.

Because...

- Joins are expensive

« Hard to scale horizontally

- Impedance mismatch occurs

- Expensive (product cost, hardware
, Maintenance)
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And ...

It’s weak in:

« Speed (performance)
« High availability

« Partition tolerance

77
g
74

;

<//



-
Scaling Up

Issues with scaling up when the dataset is just too big
RDBMS were not designed to be distributed

Began to look at multi-node database solutions
Known as ‘scaling out’ or ‘horizontal scaling’

Different approaches include:

= Master-slave
= Sharding

Orders
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Credit Cards
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Scaling RDBMS - Master/Slave

e Master-Slave

= All writes are written to the master. All reads performed
against the replicated slave databases

= Critical reads may be incorrect as writes may not have been
propagated down

= Large data sets can pose problems as master needs to
duplicate data to slaves
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Scaling RDBMS - Sharding

« Partition or sharding
= Scales well for both reads and writes
= Not transparent, application needs to be partition-aware
= Can no longer have relationships/joins across partitions
= Loss of referential integrity across shards
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Sharding Advantages

 Tables are divided and distributed into multiple servers
Reduces index size, which generally improves search
performance

A database shard can be placed on separate hardware
greatly improving performance

if the database shard is based on some real-world
segmentation of the data then it may be possible to infer
the appropriate shard membership easily and
automatically


https://en.wikipedia.org/wiki/Index_(database)

-
Other ways to scale RDBMS

Multi-Master replication
INSERT only, not UPDATES/DELETES

No JOINSs, thereby reducing query time
= This involves de-normalizing data

In-memory databases
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What we need?

We need a distributed database system having such
features:

- High Concurrency

- High Availability

Fault tolerance

High Scalability

Low latency

Efficient Storage

Reduce Manage and Operation Cost

Which is impossible!!!
According to CAP theorem
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Distributed Database Systems

 Data is stored across several sites that share no physical
component.

 Systems that run on each site are independent of each
other.

« Appears to user as a single system.
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Distributed Data Storage

- Partitioning : - Replication :
= Data is partitioned into > System maintains multiple
several fragments and copies of data, stored in
stored in different sites. different sites.

» Horizontal — by rows.
= Vertical — by columns.

Replication and Partitioning can be combined !
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Partitioning

A B
key | value key | value A B
ke value
key | value x 5 y 7 Y
X 5
X 2 z 10
7
Y [/ C ¥
. 10 z 10
key | value
W 12 W 12 W 12
Horizontal Vertical

 Locality of reference — data is most likely to be updated and
queried locally.
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Replication

A B
key | value key | value
X ) X 5
key | value y 7 z 10
X 5
W 7
C D
z 10
key | value key | value
w 12
y 7 Fi 10
W 12 W 12

- Pros — Increased availability of data and faster query evaluation.

- Cons 1— Increased cost of updates and complexity of concurrency
control.
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CAP Theorem

« In 2000, Berkeley, CA, researcher Eric Brewer published
his now foundational CAP Theorem
o (consistency, availability and partition tolerance)

- which states that it is impossible for a distributed

computer system to simultaneously provide all three CAP
guarantees.

- In May 2012, Brewer clarified some of his positions on the oft-
used “two out of three” concept.
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CAP Theorem

- Consistency:
= all nodes see the same data at the same time
- Availability:
= a guarantee that every request receives a response about
whether it was successful or failed

 Partition tolerance:

> the system continues to operate despite arbitrary message loss or
failure of part of the system

T‘weurem — Yﬁu can “\‘a\re at most two of f“\e‘ﬁe -prc-perﬁ[es
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CAP Theorem

Consistency Availability Partition tolerance
B B
S &~ &
A
v




1
CAP - 2 of 3

P—
Tolerance

o If there are no partitions, it is clearly possible
consistent, available data (e.g. read-any write-all).Best-

effort availability:
- Examples: | |
Consistent and available
= RDBMs No partition.

Data Data
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CAP - 2 of 3

e Trivial:
= The trivial system that ignores all requests meets these
requirements.
- Best-effort availability:

= Read-any write-all systems will become unavailable only
when messages are lost. Consistent and partitioned

° EXamples: Not ava?lable, waiting...
s Distributed database systems, BigTable

App

New Data

Wait for new data

bl
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CAP - 2 of 3

Partition
Tolerance

o Trivial:
= The service can trivially return the initial value in response
to every request.
- Best-effort consistency:

= Quorum-based system, modified to time-out lost messages,
will only return inconsistent(and, in particular, stale) data
when messages are lost.  avaiabie and partitioned

. Not consistent, we get back old data.
- Examples:

= Web cashes, Dynamo

Old Data

Data
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