
CIB Session 9th

Intro to NoSQL Database

By: Shahab Safaee & Morteza Zahedi

Software Engineering PhD

Email: safaee.shx@gmail.com , morteza.zahedi.a@gmail.com

 cibtrc.ir

 cibtrc

 cibtrc

mailto:safaee.shx@gmail.com
mailto:morteza.zahedi.a@gmail.com

Agenda
• Some history

• Relational databases

• ACID Theorem

• Scaling Up

• Distributed Database Systems

• CAP Theorem

• What is NoSQL?

• BASE Transactions

• NoSQL Types

• Some Statistics

• NoSQL vs. SQL Summery

2

A brief history of databases

3

Relational databases

4

• Benefits of Relational databases:
▫ Designed for all purposes

▫ ACID

▫ Strong consistency, concurrency, recovery

▫ Mathematical background

▫ Standard Query language (SQL)

▫ Lots of tools to use with i.e: Reporting, services, entity frameworks,
...

▫ Vertical scaling (up scaling)

ACID Theorem

5

• Atomic:
▫ All of the work in a transaction completes (commit) or none of it completes
▫ All operations in a transaction succeed or every operation is rolled back.

• Consistent:
▫ A transaction transforms the database from one consistent state to another

consistent state. Consistency is defined in terms of constraints.
▫ On the completion of a transaction, the database is structurally sound.

• Isolated:
▫ The results of any changes made during a transaction are not visible until the

transaction has committed.
▫ Transactions do not contend with one another. Contentious access to data is

moderated by the database so that transactions appear to run sequentially.

• Durable:
▫ The results of a committed transaction survive failures
▫ The results of applying a transaction are permanent, even in the presence of

failures.

Era of Distributed Computing

6

But...

• Relational databases were not built for
distributed applications.

Because...

• Joins are expensive

• Hard to scale horizontally

• Impedance mismatch occurs

• Expensive (product cost, hardware
, Maintenance)

Era of Distributed Computing

7

But...
• Relational databases were not built for

distributed applications.

Because...
• Joins are expensive
• Hard to scale horizontally
• Impedance mismatch occurs
• Expensive (product cost, hardware

, Maintenance)

And …
It‟s weak in:
• Speed (performance)
• High availability
• Partition tolerance

Scaling Up

8

• Issues with scaling up when the dataset is just too big

• RDBMS were not designed to be distributed

• Began to look at multi-node database solutions

• Known as „scaling out‟ or „horizontal scaling‟

• Different approaches include:

▫ Master-slave

▫ Sharding

Scaling RDBMS – Master/Slave

9

• Master-Slave

▫ All writes are written to the master. All reads performed
against the replicated slave databases

▫ Critical reads may be incorrect as writes may not have been
propagated down

▫ Large data sets can pose problems as master needs to
duplicate data to slaves

Scaling RDBMS - Sharding

10

• Partition or sharding

▫ Scales well for both reads and writes

▫ Not transparent, application needs to be partition-aware

▫ Can no longer have relationships/joins across partitions

▫ Loss of referential integrity across shards

Sharding Advantages

• Tables are divided and distributed into multiple servers

• Reduces index size, which generally improves search
performance

• A database shard can be placed on separate hardware

• greatly improving performance

• if the database shard is based on some real-world
segmentation of the data then it may be possible to infer
the appropriate shard membership easily and
automatically

11

https://en.wikipedia.org/wiki/Index_(database)

Other ways to scale RDBMS

12

• Multi-Master replication

• INSERT only, not UPDATES/DELETES

• No JOINs, thereby reducing query time

▫ This involves de-normalizing data

• In-memory databases

What we need?

13

We need a distributed database system having such
features:
• High Concurrency
• High Availability
• Fault tolerance
• High Scalability
• Low latency
• Efficient Storage
• Reduce Manage and Operation Cost

Which is impossible!!!

According to CAP theorem

Distributed Database Systems

14

• Data is stored across several sites that share no physical
component.

• Systems that run on each site are independent of each
other.

• Appears to user as a single system.

Distributed Data Storage

15

• Partitioning :

▫ Data is partitioned into
several fragments and
stored in different sites.

▫ Horizontal – by rows.

▫ Vertical – by columns.

• Replication :
▫ System maintains multiple

copies of data, stored in
different sites.

Replication and Partitioning can be combined !

Partitioning

16

• Locality of reference – data is most likely to be updated and
queried locally.

Replication

17

• Pros – Increased availability of data and faster query evaluation.
• Cons – Increased cost of updates and complexity of concurrency

control.

CAP Theorem

18

• In 2000, Berkeley, CA, researcher Eric Brewer published
his now foundational CAP Theorem

▫ (consistency, availability and partition tolerance)

• which states that it is impossible for a distributed

computer system to simultaneously provide all three CAP
guarantees.

• In May 2012, Brewer clarified some of his positions on the oft-
used “two out of three” concept.

http://en.wikipedia.org/wiki/CAP_theorem
http://en.wikipedia.org/wiki/CAP_theorem

CAP Theorem

19

• Consistency:
▫ all nodes see the same data at the same time

• Availability:

▫ a guarantee that every request receives a response about
whether it was successful or failed

• Partition tolerance:
▫ the system continues to operate despite arbitrary message loss or

failure of part of the system

CAP Theorem

20

CAP – 2 of 3

21

• If there are no partitions, it is clearly possible to provide
consistent, available data (e.g. read-any write-all).Best-
effort availability:

• Examples:
▫ RDBMs

CAP – 2 of 3

22

• Trivial:

▫ The trivial system that ignores all requests meets these
requirements.

• Best-effort availability:

▫ Read-any write-all systems will become unavailable only
when messages are lost.

• Examples:
▫ Distributed database systems, BigTable

CAP – 2 of 3

23

• Trivial:

▫ The service can trivially return the initial value in response
to every request.

• Best-effort consistency:

▫ Quorum-based system, modified to time-out lost messages,
will only return inconsistent(and, in particular, stale) data
when messages are lost.

• Examples:
▫ Web cashes, Dynamo

Reference

24

• http://nosql-database.org/

• http://wikibon.org/wiki/v/21_NoSQL_Innovators_to_Look_for_i
n_2020#Introduction

• https://db-engines.com

• http://basho.com/posts/technical/why-vector-clocks-are-easy/

• …

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/
http://wikibon.org/wiki/v/21_NoSQL_Innovators_to_Look_for_in_2020
http://wikibon.org/wiki/v/21_NoSQL_Innovators_to_Look_for_in_2020
http://wikibon.org/wiki/v/21_NoSQL_Innovators_to_Look_for_in_2020
https://db-engines.com/
https://db-engines.com/
https://db-engines.com/
https://db-engines.com/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/

25

