
CIB Session 12th

NoSQL Databases Structures

By: Shahab Safaee & Morteza Zahedi

Software Engineering PhD

Email: safaee.shx@gmail.com , morteza.zahedi.a@gmail.com

 cibtrc.ir

 cibtrc

 cibtrc

mailto:safaee.shx@gmail.com
mailto:morteza.zahedi.a@gmail.com

Agenda
• What is NoSQL?

• BASE Transactions

• NoSQL Types

• Redis System Properties

• Hbase System Properties

• Cassandra System Properties

• MongoDB System Properties

• Jeo4j System Properties

• Some of Important Statistics

• NoSQL vs. SQL Summery

2

What is NoSQL?

3

• Stands for Not Only SQL

▫ Term was redefined by Eric Evans after Carlo Strozzi.

• Class of non-relational data storage systems

• Usually do not require a fixed table schema nor do they
use the concept of joins

• All NoSQL offerings relax one or more of the ACID
properties (Based on the CAP theorem)

NoSQL Definition

4

From www.nosql-database.org:

• Next Generation Databases mostly addressing some of the points:
▫ being non-relational

▫ distributed

▫ open-source

▫ horizontal scalable.

• The original intention has been modern web-scale databases.
The movement began early 2009 and is growing rapidly.

• Often more characteristics apply as:
▫ schema-free

▫ easy replication support

▫ simple API

▫ eventually consistent / BASE (not ACID)

▫ a huge data amount, and more.

BASE Transactions

• Acronym contrived to be the opposite of ACID
▫ Basically Available

 The database appears to work most of the time (Replication and Sharding Mechanisms).
 Part of system failure is OK, But total system failure is not Ok.

▫ Soft state
 Consistency guaranty with Application Developer.

▫ Eventually Consistent
 In ACID, Enforce Consistency and guarantee Consistency of Transaction.
 In Eventually Consistency, Currently accept transaction then in next time Consistence.

 No Guarantee Consistency in any time, but Guarantee in next time.

 Guaranties consistency only at undefended future time.

• Characteristics
▫ Weak consistency
▫ Availability first
▫ Optimistic
▫ Simpler and faster

5

BASE vs ACID

• ACID:
▫ Strong Consistency
▫ Less Availability
▫ Pessimistic Concurrency
▫ Complex

• BASE
▫ Availability is the most important thing.
▫ Weaker consistency (Eventual)
▫ Simple and Fast
▫ Optimistic

6

CAP Theorem with ACID and BASE

Visualized

7

NoSQL Types

8

No SQL database are classified into four types:

• Key Value pair based

• Column based

• Document based

• Graph based

Motivated by column storage model, eventual consistency,
distributed cache system

According to the way of data storage, this type of databases can
be classified into 3 categories

• Temporary

• permanent

• hybrid

Key Value Pair Based

9

• Designed for processing dictionary.
Dictionaries contain a collection of
records having fields containing data.

• Records are stored and retrieved using
a key that uniquely identifies the record,
and is used to quickly find the data
 with in the database.

Example:

 CouchDB, Oracle NoSQL Database, Riak etc.

• We use it for storing session information, user profiles, shopping cart
data, Telecom directories.

• We would avoid it when we need to query data having relationships
between entities.

Column based

10

• It store data as Column families
containing rows that have many
columns associated with a row key.
Each row can have different columns.

• Column families are groups of
related data that is accessed together.

Example:

 Cassandra, HBase, Hypertable, and Amazon DynamoDB.

• We use it for content management systems, blogging platforms, log
aggregation.

• We would avoid it for systems that are in early development,
changing query patterns.

11

the column-oriented database can be used for the storage of the batch
program to update the massive amount of data.

Column based (Example)

Benefits of Column Store Databases

• Compression. Column stores are very efficient at data
compression and/or partitioning.

• Aggregation queries. Due to their structure, columnar
databases perform particularly well with aggregation queries
(such as SUM, COUNT, AVG, etc).

• Scalability. Columnar databases are very scalable. They are
well suited to massively parallel processing (MPP), which
involves having data spread across a large cluster of machines
– often thousands of machines.

• Fast to load and query. Columnar stores can be loaded
extremely fast. A billion row table could be loaded within a
few seconds. You can start querying and analysing almost
immediately.

12

https://database.guide/what-is-an-mpp-database/

Document Based

13

• The database stores and retrieves
documents. It stores documents in
 the value part of the key-value store.

• Self-describing, hierarchical tree
 data structures consisting of maps,
 collections, and scalar values.

Example:

 LotusNotes, MongoDB, CouchDB, OrientDB, RavenDB.

• We use it for content management systems, blogging platforms, web
analytics, real-time analytics, e-commerce applications.

• We would avoid it for systems that need complex transactions
spanning multiple operations or queries against varying aggregate
structures.

Graph Based

14

• Store entities and relationships
between these entities as nodes
 and edges of a graph respectively.
Entities have properties.

• Traversing the relationships is
very fast as relationship between
nodes is not calculated at query time
but is actually persisted as a relationship.

Example:

 Neo4J, Infinite Graph, OrientDB, FlockDB.

• It is well suited for connected data, such as social networks, spatial
data, routing information for goods and supply.

Top 10 of NoSQL DB with Data

Models

15

Common Advantages

16

• Cheap, easy to implement (open source)
• Data are replicated to multiple nodes (therefore

identical and fault-tolerant) and can be
partitioned
▫ Down nodes easily replaced

▫ No single point of failure

• Easy to distribute
• Don't require a schema
• Can scale up and down
• Relax the data consistency requirement (CAP)

What is not provided by NoSQL

17

• Joins

• Group by

• ACID transactions

• SQL

• Integration with applications that are based on
SQL

Some Statistics

18

• Facebook Search

• MySQL > 50 GB Data

▫ Writes Average : ~300 ms

▫ Reads Average : ~350 ms

• Rewritten with Cassandra > 50 GB Data

▫ Writes Average : 0.12 ms

▫ Reads Average : 15 ms

Don’t forget about the DBA

19

• It does not matter if the data is deployed on a NoSQL
platform instead of an RDBMS.

• Still need to address:
▫ Backups & recovery

▫ Capacity planning

▫ Performance monitoring

▫ Data integration

▫ Tuning & optimization

• What happens when things don’t work as expected and nodes
are out of sync or you have a data corruption occurring at
2am?

• Who you gonna call?
▫ DBA and SysAdmin need to be on board

NoSQL vs. SQL Summery

20

NOSQL FRAMEWORK

21

NoSQL vs. SQL Summery Features

22

Visual Guide to NoSQL Systems

23

Redis System Properties (1)

24

• Description
▫ In-memory data structure store

• database model
▫ Key-Value Store

• Initial release
▫ 2009

• Current release
▫ 5.0.1, November 2018

• License
▫ Open Source

• Implementation language
▫ C

• Server operating systems
▫ BSD, Linux, OS X and Windows

Redis System Properties (2)

25

• Data scheme
▫ Schema-free

• Typing
▫ Strings, Hash, Lists, Sets and …

• XML support
▫ No

• Secondary indexes
▫ Yes

• SQL
▫ Not Support

• Supported programming languages
▫ C, C++, C#, Java, PHP, Perl, R, Python, Scala and …

• Triggers
▫ No

Redis System Properties (3)

26

• Partitioning method
▫ Sharding

• Replication methods
▫ Replication

• MapReduce
▫ Not Support

• Consistency concepts
▫ Eventual Consistency

• SQL
▫ No

• Foreign keys
▫ No

• Concurrency
▫ Yes

Redis System Properties (4)

27

• Durability
▫ Yes

• In-memory capabilities
▫ Yes

• User concepts
▫ Simple password-based access control

• Cloud-based only
▫ No

• Website
▫ redis.io

• Developer
▫ Salvatore Sanfilippo

https://redis.io/

HBase System Properties (1)

28

• Description
▫ Wide-column store based on Apache Hadoop and on concepts of

BigTable
• database model

▫ Column families Store

• Initial release
▫ 2008

• Current release
▫ 1.4.3, April 2018

• License
▫ Open Source

• Implementation language
▫ Java

• Server operating systems
▫ Linux and Unix

HBase System Properties (2)

29

• Data scheme
▫ Schema-free

• Typing
▫ No

• XML support
▫ No

• Secondary indexes
▫ No

• SQL
▫ Not Support

• Supported programming languages
▫ C, C++, C#, Java, Perl, PHP, Python, Scala and …

• Triggers
▫ Yes

HBase System Properties (3)

30

• Partitioning method
▫ Sharding

• Replication methods
▫ Selectable replication factor

• MapReduce
▫ Yes

• Consistency concepts
▫ Immediate Consistency

• Foreign keys
▫ No

• Concurrency
▫ Yes

• Durability
▫ Yes

HBase System Properties (4)

31

• In-memory capabilities
▫ No

• User concepts
▫ Access Control Lists (ACL)

 Implementation based on Hadoop and ZooKeeper

• Cloud-based only
▫ No

• Website
▫ hbase.apache.org

• Developer
▫ Apache Software Foundation

http://hbase.apache.org/

Cassandra System Properties (1)

32

• Description
▫ Wide-column store based on ideas of BigTable and DynamoDB

• database model
▫ Column families Store

• Initial release
▫ 2008

• Current release
▫ 3.11.3, August 2018

• License
▫ Open Source

• Implementation language
▫ Java

• Server operating systems
▫ BSD, Linux and Windows

Cassandra System Properties (2)

33

• Data scheme
▫ Schema-free

• Typing
▫ Yes

• XML support
▫ No

• Secondary indexes
▫ Restricted (Only Equality Queries)

• SQL
▫ SQL-like SELECT, DML and DDL statements (CQL)

• Supported programming languages
▫ C, C++, C#, Java, Perl, PHP, Python, Scala and …

• Triggers
▫ Yes

Cassandra System Properties (3)

34

• Partitioning method
▫ Sharding

• Replication methods
▫ Selectable replication factor

• MapReduce
▫ Yes

• Consistency concepts
▫ Eventual Consistency

• Foreign keys
▫ No

• Concurrency
▫ Yes

• Durability
▫ Yes

Cassandra System Properties (4)

35

• In-memory capabilities
▫ No

• User concepts
▫ Access rights for users can be defined per object

• Cloud-based only
▫ No

• Website
▫ cassandra.apache.org

• Developer
▫ Apache Software Foundation

http://cassandra.apache.org/
http://hbase.apache.org/

MongoDB System Properties (1)

36

• Description
▫ One of the most popular document stores

• Database model
▫ Document Store

• Initial release
▫ 2009

• Current release
▫ 4.0.3, October 2018

• License
▫ Open Source

• Implementation language
▫ C++

• Server operating systems
▫ Solaris, Linux and Windows

MongoDB System Properties (2)

37

• Data scheme
▫ Schema-free

• Typing
▫ Yes (String, Integer, Double, Decimal)

• Secondary indexes
▫ Yes

• SQL
▫ Read-only SQL queries

• Supported programming languages
▫ C, C++, C#, Java, Perl, PHP, R, Python, Scala and …

• Triggers
▫ No

MongoDB System Properties (3)

38

• Partitioning method
▫ Sharding

• Replication methods
▫ Replication

• MapReduce
▫ Yes

• Consistency concepts
▫ Eventual Consistency

• Foreign keys
▫ No

• Concurrency
▫ Yes

• Durability
▫ Yes

MongoDB System Properties (4)

39

• In-memory capabilities
▫ Yes

• User concepts
▫ Access rights for users and roles

• Cloud-based only
▫ No

• Website
▫ www.mongodb.com

• Developer
▫ MongoDB, Inc

https://www.mongodb.com/
http://hbase.apache.org/

Neo4j System Properties (1)

40

• Description
▫ Open source graph database

• database model
▫ Graph DBMS

• Initial release
▫ 2007

• Current release
▫ 3.4.9, October 2018

• License
▫ Open Source

• Implementation language
▫ Java, Scala

• Server operating systems
▫ Solaris, Linux and Windows

Neo4j System Properties (2)

41

• Data scheme
▫ schema-free and schema-optional

• Typing
▫ Yes

• Secondary indexes
▫ Yes

• SQL
▫ No

• Supported programming languages
▫ .Net, Java, Perl, PHP, Python, Scala and …

• Triggers
▫ Yes

Neo4j System Properties (3)

42

• Partitioning method
▫ None

• Replication methods
▫ Restricted

• MapReduce
▫ No

• Consistency concepts
▫ Eventual Consistency

• Foreign keys
▫ Yes

• Concurrency
▫ Yes

• Durability
▫ Yes

Neo4j System Properties (4)

43

• User concepts
▫ Users, roles and permissions
▫ Pluggable authentication with supported

standards (LDAP, Active Directory, Kerberos)

• Cloud-based only
▫ No

• Website
▫ neo4j.com

• Developer
▫ Neo4j, Inc.

https://neo4j.com/
http://hbase.apache.org/

Most popular DBMS

44

NoSQL DB Catagories Example

45

Trend Popularity

46

Ranking of Relational DBMS

47

Ranking of Key-value Stores

48

Ranking of Document Stores

49

Ranking of Column Families Stores

50

Ranking of Graph DBMS

51

Popularity changes per category,

July 2018

52

Summary

53

Reference

54

• http://nosql-database.org/

• http://wikibon.org/wiki/v/21_NoSQL_Innovators_to_Look_for_i
n_2020#Introduction

• https://db-engines.com

• http://basho.com/posts/technical/why-vector-clocks-are-easy/

• …

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/
http://wikibon.org/wiki/v/21_NoSQL_Innovators_to_Look_for_in_2020
http://wikibon.org/wiki/v/21_NoSQL_Innovators_to_Look_for_in_2020
http://wikibon.org/wiki/v/21_NoSQL_Innovators_to_Look_for_in_2020
https://db-engines.com/
https://db-engines.com/
https://db-engines.com/
https://db-engines.com/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/
http://basho.com/posts/technical/why-vector-clocks-are-easy/

55

