
Intro to Big Data Processing

Frameworks

By: Shahab Safaee

Computer Software Engineering PhD

Email: safaee.shx@gmail.com

 cibtrc.ir

 t.me/cibtrc

 www.instagram.com/cibtrc/

mailto:safaee.shx@gmail.com

Agenda
• Introduction

• Big Data Processing Architecture

• Type of Processing Systems

• Processing Types of Big Data Processing Frameworks

• Big Data Execution Engine

• Taxonomy of Programming Models

• Hadoop Execution Engine

2

Introduction

• Big Data Processing Terminology

▫ Big Data Processing Framework

 Actual component responsible for operating on data

▫ Big Data Execution Engine

 Provide the computational model that performs several independent

sequential computations in parallel which comprises of

subcomponents of a larger computation.

▫ Big Data Programming Models

 Programming models normally the core feature of big data

frameworks as they implicitly affects the execution model of big data

processing engines and also drives the way for users to express and

construct the big data applications and programs.

3

Big Data Processing Architecture

4

Type of Processing Systems (1)

• Batch Processing Systems

▫ Batch processing involves operating over a large, static dataset and

returning the result at a later time when the computation is complete.

• The datasets in batch processing are typically...

▫ Bounded: batch datasets represent a finite collection of data

▫ Persistent: data is almost always backed by some type of permanent

storage

▫ Large: batch operations are often the only option for processing

extremely large sets of data

▫ Batch processing is well-suited for calculations where access to a

complete set of records is required.

5

Type of Processing Systems (2)

• Stream Processing Systems

▫ Stream processing systems compute over data as it enters the system.

▫ Instead of defining operations to apply to an entire dataset, stream

processors define operations that will be applied to each individual data

item as it passes through the system.

• The datasets in stream processing are considered "unbounded". This

has a few important implications:

▫ The total dataset is only defined as the amount of data that has entered

the system so far.

▫ The working dataset is perhaps more relevant, and is limited to a single

item at a time.

▫ Processing is event-based and does not "end" until explicitly stopped.

Results are immediately available and will be continually updated as

new data arrives.

6

Processing Types of Big Data

Processing Frameworks
• Batch-only frameworks:

▫ Apache Hadoop

• Stream-only frameworks:

▫ Apache Storm

▫ Apache Samza

• Hybrid frameworks:

▫ Apache Spark

▫ Apache Flink

7

Batch-only frameworks

8

Apache Hadoop (1)

• Apache Hadoop is a processing framework that exclusively provides batch
processing.

• Hadoop was the first big data framework to gain significant traction in the
open-source community.

• Modern versions of Hadoop are composed of several components or layers,
that work together to process batch data:

▫ HDFS:

 HDFS is the distributed file system layer that coordinates storage and replication
across the cluster nodes.

 HDFS ensures that data remains available in spite of inevitable host failures

▫ YARN:
 YARN, which stands for Yet Another Resource Negotiator, is the cluster

coordinating component of the Hadoop stack. It is responsible for coordinating
and managing the underlying resources and scheduling jobs to be run.

▫ MapReduce:

 MapReduce is Hadoop's native batch processing engine.

9

Apache Hadoop (2)

• Apache Hadoop and its MapReduce processing engine offer a well-

tested batch processing model that is best suited for handling very

large data sets where time is not a significant factor.

• The low cost of components necessary for a well-functioning

Hadoop cluster makes this processing inexpensive and effective for

many use cases.

• Compatibility and integration with other frameworks and engines

mean that Hadoop can often serve as the foundation for multiple

processing workloads using diverse technology.

10

Stream-only frameworks/Kappa Architecture

11

Apache Storm

• Apache Storm is a stream processing framework that focuses on

extremely low latency and is perhaps the best option for workloads

that require near real-time processing.

• It can handle very large quantities of data with and deliver results

with less latency than other solutions.

• For pure stream processing workloads with very strict latency

requirements, Storm is probably the best mature option.

• It can guarantee message processing and can be used with a large

number of programming languages.

• Because Storm does not do batch processing, you will have to use

additional software if you require those capabilities.

• If you have a strong need for exactly-once processing guarantees,

Trident can provide that.

12

Apache Samza

• Apache Samza is a stream processing framework that is tightly tied

to the Apache Kafka messaging system.
• While Kafka can be used by many stream processing systems,

Samza is designed specifically to take advantage of Kafka's unique
architecture and guarantees.

• It uses Kafka to provide fault tolerance, buffering, and state storage.

• Apache Samza is a good choice for streaming workloads where
Hadoop and Kafka are either already available or sensible to
implement.

• Samza itself is a good fit for organizations with multiple teams
using (but not necessarily tightly coordinating around) data streams
at various stages of processing.

• Samza greatly simplifies many parts of stream processing and offers
low latency performance.

13

Hybrid Processing Systems: Batch and

Stream Processors/Lambda processing
• Some processing frameworks can handle both batch and stream

workloads.

▫ These frameworks simplify diverse processing requirements by allowing

the same or related components and APIs to be used for both types of data.

14

Apache Spark

• Apache Spark is a next generation batch processing framework with

stream processing capabilities.

• Built using many of the same principles of Hadoop's MapReduce

engine, Spark focuses primarily on speeding up batch processing

workloads by offering full in-memory computation and processing

optimization.

• Spark is a great option for those with diverse processing workloads.

Spark batch processing offers incredible speed advantages, trading

off high memory usage.

• Spark Streaming is a good stream processing solution for workloads

that value throughput over latency.

15

Apache Flink (1)

• Apache Flink is a stream processing framework that can also handle

batch tasks. It considers batches to simply be data streams with

finite boundaries, and thus treats batch processing as a subset of

stream processing. This stream-first approach to all processing has a

number of interesting side effects.

• This stream-first approach has been called the Kappa architecture,

in contrast to the more widely known Lambda architecture (where

batching is used as the primary processing method with streams

used to supplement and provide early but unrefined results).

• Kappa architecture, where streams are used for everything,

simplifies the model and has only recently become possible as

stream processing engines have grown more sophisticated.

16

Apache Flink (2)

• Flink offers both low latency stream processing with support for

traditional batch tasks.

• Flink is probably best suited for organizations that have heavy

stream processing requirements and some batch-oriented tasks.

• Its compatibility with native Storm and Hadoop programs, and its

ability to run on a YARN-managed cluster can make it easy to

evaluate.

• Its rapid development makes it worth keeping an eye on.

17

Big Data Processing Frameworks Comparison

• There are plenty of options for processing within a big data system.

▫ For batch-only workloads that are not time-sensitive, Hadoop is a good
choice that is likely less expensive to implement than some other
solutions.

▫ For stream-only workloads, Storm has wide language support and can
deliver very low latency processing, but can deliver duplicates and
cannot guarantee ordering in its default configuration.

▫ For mixed workloads, Spark provides high speed batch processing and
micro-batch processing for streaming. It has wide support, integrated
libraries and tooling, and flexible integrations. Flink provides true
stream processing with batch processing support. It is heavily optimized,
can run tasks written for other platforms, and provides low latency
processing, but is still in the early days of adoption.

▫ The best fit for your situation will depend heavily upon the state of the
data to process

18

Big Data Execution Engine

• Features

▫ Scalable

▫ Fault Tolerant

▫ Parallelism

• Infrastructure Processing

▫ Commodity Clustered Machines

• Programming Models

▫ A programming model is the fundamental style and interfaces for

developers to write computing programs and applications.

• Instance of Execution Engines:

▫ MapReduce, Spark, Stratosphere, Dryad, Hyracks, ...

19

Distributed Data-Parallel Patterns and

Execution Engines

• The are many distributed data-parallel patterns

• The main advantages of using these patterns:
▫ Support the distribution of data and parallel processing of data

with distributed data on multiple nodes/cores.

▫ Provide a higher-level programming model in order to facilitate
the user program parallelization.

▫ Follow a principle of "moving computations to data" that reduces
the data movements overheads.

▫ Have a good scalability and efficiency in performance when
executing on distributed resources.

▫ Support run time features such as load balancing, fault-tolerance,
etc.

▫ Simplify the difficulties for parallel programming as compared to
the traditional programming interfaces MPI and openMP.

20

Main Characteristics of Distributed

Execution Engines

• The design purpose of Distributed Execution Engines is to

consider the fundamental characteristics which are as follows:

▫ Task Scheduling

▫ Data Distribution

▫ Load Balancing

▫ Transparent Fault Tolerance

▫ Control Flow

▫ Tracking Dependencies

21

Taxonomy of Programming Models

22

MapReduce

• MapReduce the current framework/paradigm for writing
data-centric parallel applications in both industry and
academia.

• MapReduce is inspired by the commonly used functions
- Map and Reduce in combination with the divide-and
conquer parallel paradigm.

• For a single MapReduce job, users implement two basic
procedure objects Mapper and Reducer for different
processing stages as shown in Figure.

23

MapReduce Paradigm (1)

24

MapReduce Paradigm (2)

• Then the MapReduce program is automatically
interpreted by the execution engine and executed in
parallel in a distributed environments.

• MapReduce is considered as a simple yet powerful
enough programming model to support a variety of the
data-intensive programs.

25

MapReduce Dataflow

26

MapReduce Features (1)

• Map and Reduce functions

▫ A MapReduce program contains a Map function doing the
parallel transformation and a Reduce function doing the
parallel aggregation and summary of the job.

▫ Between Map and Reduce an implied Shuffle step is
responsible for grouping and sorting the Mapped results
and then feeding it into the Reduce step.

27

MapReduce Features (2)

• Simple paradigm

▫ In MapReduce programming, users only need to write the
logic of Mapper and Reducer while the logic of shuffling,
partitioning and sorting is automatically done by the
execution engine.

▫ Complex applications and algorithms can be implemented
by connecting a sequence of MapReduce jobs.

▫ Due to this simple programming paradigm, it is much more
convenient to write data-driven parallel applications,
because users only need to consider the logic of processing
data in each Mapper and Reducer without worrying about
how to parallelize and coordinate the jobs.

28

MapReduce Features (3)

• Key-Value based

▫ In MapReduce, both input and output data are considered
as Key-Value pairs with different types.

▫ This design is because of the requirements of parallelization
and scalability.

▫ Key-value pairs can be easily partitioned and distributed to
be processed on distributed clusters.

• Parallelable and Scalable

▫ Both Map and Reduce functions are designed to facilitate
parallelization, so MapReduce applications are generally
linearly-scalable to thousands of nodes.

29

Hadoop Execution Engine (1)

• Hadoop MapReduce

▫ Hadoop is the open-source implementation of Google’s
MapReduce paradigm.

▫ The native programming primitives in Hadoop are Mapper
and Reducer interfaces which can be implemented by
programmers with their actual logic of processing map and
reduce stage transformation and processing.

▫ To support more complicated applications, users may need
to chain a sequence of MapReduce jobs each of which is
responsible for a processing module with well defined
functionality.

30

Hadoop Execution Engine (2)

• Hadoop MapReduce

▫ Hadoop is mainly implemented in Java, therefore, the map
and reduce functions are wrapped as two interfaces called
Mapper and Reducer.

▫ The Mapper contains the logic of processing each key-value
pair from the input.

▫ The Reducer contains the logic for processing a set of values
for each key.

▫ Programmers build their MapReduce application by
implementing those two interfaces and chaining them as an
execution pipeline.

31

MapReduce Word Count Process

32

Word Count example in Hadoop

33

34

