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Introduction 

• Big Data Processing Terminology 

▫ Big Data Processing Framework 

 Actual component responsible for operating on data 

▫ Big Data Execution Engine 

 Provide the computational model that performs several independent 

sequential computations in parallel which comprises of 

subcomponents of a larger computation. 

▫ Big Data Programming Models 

 Programming models normally the core feature of big data 

frameworks as they implicitly affects the execution model of big data 

processing engines and also drives the way for users to express and 

construct the big data applications and programs. 
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Big Data Processing Architecture 
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Type of Processing Systems (1) 

• Batch Processing Systems 

▫ Batch processing involves operating over a large, static dataset and 

returning the result at a later time when the computation is complete. 

• The datasets in batch processing are typically... 

▫ Bounded: batch datasets represent a finite collection of data 

▫ Persistent: data is almost always backed by some type of permanent 

storage 

▫ Large: batch operations are often the only option for processing 

extremely large sets of data 

▫ Batch processing is well-suited for calculations where access to a 

complete set of records is required. 
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Type of Processing Systems (2) 

• Stream Processing Systems 

▫ Stream processing systems compute over data as it enters the system. 

▫ Instead of defining operations to apply to an entire dataset, stream 

processors define operations that will be applied to each individual data 

item as it passes through the system. 

• The datasets in stream processing are considered "unbounded". This 

has a few important implications: 

▫ The total dataset is only defined as the amount of data that has entered 

the system so far. 

▫ The working dataset is perhaps more relevant, and is limited to a single 

item at a time. 

▫ Processing is event-based and does not "end" until explicitly stopped. 

Results are immediately available and will be continually updated as 

new data arrives. 
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Processing Types of Big Data 

Processing Frameworks 
• Batch-only frameworks: 

▫ Apache Hadoop 

• Stream-only frameworks: 

▫ Apache Storm 

▫ Apache Samza 

• Hybrid frameworks: 

▫ Apache Spark 

▫ Apache Flink 
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Batch-only frameworks 
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Apache Hadoop (1) 

• Apache Hadoop is a processing framework that exclusively provides batch 
processing. 

• Hadoop was the first big data framework to gain significant traction in the 
open-source community. 

• Modern versions of Hadoop are composed of several components or layers, 
that work together to process batch data: 

▫ HDFS: 

 HDFS is the distributed file system layer that coordinates storage and replication 
across the cluster nodes.  

 HDFS ensures that data remains available in spite of inevitable host failures 

▫ YARN: 
 YARN, which stands for Yet Another Resource Negotiator, is the cluster 

coordinating component of the Hadoop stack. It is responsible for coordinating 
and managing the underlying resources and scheduling jobs to be run.  

▫ MapReduce:  

 MapReduce is Hadoop's native batch processing engine. 

9 



Apache Hadoop (2) 

• Apache Hadoop and its MapReduce processing engine offer a well-

tested batch processing model that is best suited for handling very 

large data sets where time is not a significant factor. 

• The low cost of components necessary for a well-functioning 

Hadoop cluster makes this processing inexpensive and effective for 

many use cases. 

• Compatibility and integration with other frameworks and engines 

mean that Hadoop can often serve as the foundation for multiple 

processing workloads using diverse technology. 
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Stream-only frameworks/Kappa Architecture  
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Apache Storm 

• Apache Storm is a stream processing framework that focuses on 

extremely low latency and is perhaps the best option for workloads 

that require near real-time processing. 

• It can handle very large quantities of data with and deliver results 

with less latency than other solutions. 

• For pure stream processing workloads with very strict latency 

requirements, Storm is probably the best mature option. 

• It can guarantee message processing and can be used with a large 

number of programming languages.  

• Because Storm does not do batch processing, you will have to use 

additional software if you require those capabilities.  

• If you have a strong need for exactly-once processing guarantees, 

Trident can provide that. 
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Apache Samza 

• Apache Samza is a stream processing framework that is tightly tied 

to the Apache Kafka messaging system.  
• While Kafka can be used by many stream processing systems, 

Samza is designed specifically to take advantage of Kafka's unique 
architecture and guarantees. 

• It uses Kafka to provide fault tolerance, buffering, and state storage. 

• Apache Samza is a good choice for streaming workloads where 
Hadoop and Kafka are either already available or sensible to 
implement. 

• Samza itself is a good fit for organizations with multiple teams 
using (but not necessarily tightly coordinating around) data streams 
at various stages of processing. 

• Samza greatly simplifies many parts of stream processing and offers 
low latency performance. 
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Hybrid Processing Systems: Batch and 

Stream Processors/Lambda processing 
• Some processing frameworks can handle both batch and stream 

workloads.  

▫ These frameworks simplify diverse processing requirements by allowing 

the same or related components and APIs to be used for both types of data. 
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Apache Spark 

• Apache Spark is a next generation batch processing framework with 

stream processing capabilities.  

• Built using many of the same principles of Hadoop's MapReduce 

engine, Spark focuses primarily on speeding up batch processing 

workloads by offering full in-memory computation and processing 

optimization. 

• Spark is a great option for those with diverse processing workloads. 

Spark batch processing offers incredible speed advantages, trading 

off high memory usage.  

• Spark Streaming is a good stream processing solution for workloads 

that value throughput over latency. 
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Apache Flink (1) 

• Apache Flink is a stream processing framework that can also handle 

batch tasks. It considers batches to simply be data streams with 

finite boundaries, and thus treats batch processing as a subset of 

stream processing. This stream-first approach to all processing has a 

number of interesting side effects. 

• This stream-first approach has been called the Kappa architecture, 

in contrast to the more widely known Lambda architecture (where 

batching is used as the primary processing method with streams 

used to supplement and provide early but unrefined results).  

• Kappa architecture, where streams are used for everything, 

simplifies the model and has only recently become possible as 

stream processing engines have grown more sophisticated. 
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Apache Flink (2) 

• Flink offers both low latency stream processing with support for 

traditional batch tasks.  

• Flink is probably best suited for organizations that have heavy 

stream processing requirements and some batch-oriented tasks.  

• Its compatibility with native Storm and Hadoop programs, and its 

ability to run on a YARN-managed cluster can make it easy to 

evaluate.  

• Its rapid development makes it worth keeping an eye on. 
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Big Data Processing Frameworks Comparison 

• There are plenty of options for processing within a big data system. 

▫ For batch-only workloads that are not time-sensitive, Hadoop is a good 
choice that is likely less expensive to implement than some other 
solutions. 

▫ For stream-only workloads, Storm has wide language support and can 
deliver very low latency processing, but can deliver duplicates and 
cannot guarantee ordering in its default configuration. 

▫ For mixed workloads, Spark provides high speed batch processing and 
micro-batch processing for streaming. It has wide support, integrated 
libraries and tooling, and flexible integrations. Flink provides true 
stream processing with batch processing support. It is heavily optimized, 
can run tasks written for other platforms, and provides low latency 
processing, but is still in the early days of adoption. 

▫ The best fit for your situation will depend heavily upon the state of the 
data to process 
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Big Data Execution Engine 

• Features 

▫ Scalable 

▫ Fault Tolerant 

▫ Parallelism 

• Infrastructure Processing 

▫ Commodity Clustered Machines 

• Programming Models 

▫ A programming model is the fundamental style and interfaces for 

developers to write computing programs and applications. 

• Instance of Execution Engines: 

▫ MapReduce, Spark, Stratosphere, Dryad, Hyracks, ... 
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Distributed Data-Parallel Patterns and 

Execution Engines 

• The are many distributed data-parallel patterns 

• The main advantages of using these patterns: 
▫ Support the distribution of data and parallel processing of data 

with distributed data on multiple nodes/cores. 

▫ Provide a higher-level programming model in order to facilitate 
the user program parallelization. 

▫ Follow a principle of "moving computations to data" that reduces 
the data movements overheads. 

▫ Have a good scalability and efficiency in performance when 
executing on distributed resources. 

▫ Support run time features such as load balancing, fault-tolerance, 
etc. 

▫ Simplify the difficulties for parallel programming as compared to 
the traditional programming interfaces MPI and openMP. 
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Main Characteristics of Distributed 

Execution Engines 

• The design purpose of Distributed Execution Engines is to 

consider the fundamental characteristics which are as follows: 

▫ Task Scheduling 

▫ Data Distribution 

▫ Load Balancing 

▫ Transparent Fault Tolerance 

▫ Control Flow 

▫ Tracking Dependencies 

21 



Taxonomy of Programming Models 
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MapReduce 

• MapReduce the current framework/paradigm for writing 
data-centric parallel applications in both industry and 
academia. 

• MapReduce is inspired by the commonly used functions 
- Map and Reduce in combination with the divide-and 
conquer parallel paradigm. 

• For a single MapReduce job, users implement two basic 
procedure objects Mapper and Reducer for different 
processing stages as shown in Figure. 
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MapReduce Paradigm (1) 
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MapReduce Paradigm (2) 

• Then the MapReduce program is automatically 
interpreted by the execution engine and executed in 
parallel in a distributed environments. 

• MapReduce is considered as a simple yet powerful 
enough programming model to support a variety of the 
data-intensive programs. 
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MapReduce Dataflow 
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MapReduce Features (1) 

• Map and Reduce functions 

▫ A MapReduce program contains a Map function doing the 
parallel transformation and a Reduce function doing the 
parallel aggregation and summary of the job.  

▫ Between Map and Reduce an implied Shuffle step is 
responsible for grouping and sorting the Mapped results 
and then feeding it into the Reduce step. 
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MapReduce Features (2) 

• Simple paradigm 

▫ In MapReduce programming, users only need to write the 
logic of Mapper and Reducer while the logic of shuffling, 
partitioning and sorting is automatically done by the 
execution engine.  

▫ Complex applications and algorithms can be implemented 
by connecting a sequence of MapReduce jobs.  

▫ Due to this simple programming paradigm, it is much more 
convenient to write data-driven parallel applications, 
because users only need to consider the logic of processing 
data in each Mapper and Reducer without worrying about 
how to parallelize and coordinate the jobs. 
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MapReduce Features (3) 

• Key-Value based 

▫ In MapReduce, both input and output data are considered 
as Key-Value pairs with different types.  

▫ This design is because of the requirements of parallelization 
and scalability.  

▫ Key-value pairs can be easily partitioned and distributed to 
be processed on distributed clusters. 

• Parallelable and Scalable 

▫ Both Map and Reduce functions are designed to facilitate 
parallelization, so MapReduce applications are generally 
linearly-scalable to thousands of nodes. 
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Hadoop Execution Engine (1) 

• Hadoop MapReduce 

▫ Hadoop is the open-source implementation of Google’s 
MapReduce paradigm. 

▫ The native programming primitives in Hadoop are Mapper 
and Reducer interfaces which can be implemented by 
programmers with their actual logic of processing map and 
reduce stage transformation and processing. 

▫ To support more complicated applications, users may need 
to chain a sequence of MapReduce jobs each of which is 
responsible for a processing module with well defined 
functionality. 
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Hadoop Execution Engine (2) 

• Hadoop MapReduce 

▫ Hadoop is mainly implemented in Java, therefore, the map 
and reduce functions are wrapped as two interfaces called 
Mapper and Reducer. 

▫ The Mapper contains the logic of processing each key-value 
pair from the input. 

▫ The Reducer contains the logic for processing a set of values 
for each key. 

▫ Programmers build their MapReduce application by 
implementing those two interfaces and chaining them as an 
execution pipeline. 

31 



MapReduce Word Count Process 
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Word Count example in Hadoop 
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