
Intro to Data Stream Distributed

Processing Platforms

By: Shahab Safaee

Big Data Researcher

Email: safaee.shx@gmail.com

 shahabsafaee

 @shahabsafaee

 @shahabsafaee.ir

mailto:safaee.shx@gmail.com

Agenda
• Data Stream Concepts

▫ What is Data Stream?

▫ Data Stream Applications

▫ Data Stream Challenges

▫ Data Stream Processing Model & Architecture

▫ DSMS vs DBMS

• Data Stream Distributed Processing Platforms

▫ Big Data Technology Stack

▫ Type of Processing Systems

▫ Storm

▫ Spark

▫ Kafka

• Running Example With Spark

2

What is Streaming

• Streaming is unstructured data that is generated
continuously by thousands of data sources.

• This Streaming data includes a wide variety of data such
as

▫ log files generated by customers using your mobile or web
applications, in-game player activity, information from
social networks, Financial trading and telemetry from
connected devices or instrumentation in data centers.

3

Data Streams - Terms

• A data stream is a (potentially unbounded) sequence of tuples

• Each tuple consist of a set of attributes, similar to a row in database
table

• Transactional data streams: log interactions between entities

▫ Credit card: purchases by consumers from merchants

▫ Telecommunications: phone calls by callers to dialed parties

▫ Web: accesses by clients of resources at servers

• Measurement data streams: monitor evolution of entity states

▫ Sensor networks: physical phenomena, road traffic

▫ IP network: traffic at router interfaces

▫ Earth climate: temperature, moisture at weather stations

4

Data Models

• Real-time data stream: sequence of items that arrive in
some order and may only be seen once.

• Stream items: like relational tuples

▫ Relation-based: e.g., STREAM, TelegraphCQ and Borealis

▫ Object-based: e.g., COUGAR, Tribecca

• Window models

▫ Direction of movements of the endpoints: fixed window,
sliding window, landmark window

▫ Time-based vs. Tuple-based

▫ Update interval: eager (for each new arriving), lazy (batch
processing), non-overlapping tumbling windows.

5

More on Windows

• Mechanism for extracting a finite relation from an
infinite stream

6

window

window

window

window window window window

window window window window window window

Sliding:

Jumping:

Overlapping

Timestamps

• Used for tuple ordering and by the DSMS for defining
window sizes (time-based)

• Useful for the user to know when the tuple originated

• Explicit:

▫ set by the source of data

• Implicit:

▫ set by DSMS, when it has arrived

• Ordering is an issue

• Distributed systems:

▫ no exact notion of time

7

Characteristics of Data Streams

• Data Streams Model:

▫ Data enters at a high speed rate

▫ The system cannot store the entire stream, but only a small
fraction

▫ How do you make critical calculations about the stream
using a limited amount of memory?

• Characteristics

▫ Huge volumes of continuous data, possibly infinite

▫ Fast changing and requires fast, real-time response

▫ Random access is expensive—single scan algorithms(can
only have one look)

8

Architecture: Stream Query Processing

9

Scratch Space

(Main memory and/or Disk)

User/Application

Continuous Query

Stream Query

Processor

Results

Multiple streams

SDMS (Stream Data
Management System)

Stream Data Applications

• Telecommunication calling records

• Business: credit card transaction flows

• Network monitoring and traffic engineering

• Financial market: stock exchange

• Engineering & industrial processes: power supply &
manufacturing

• Sensor, monitoring & surveillance: video streams, RFIDs

• Web logs and Web page click streams

• Massive data sets (even saved but random access is too
expensive)

10

Problems/Challenges

• Zillions of data

▫ Continuous/Unbounded

▫ Examples arrive faster than they can be mined

▫ Application may require fast, real-time response

• Time/Space constrained

▫ Not enough memory

▫ Can’t afford storing/revisiting the data

 Single pass computation

▫ External memory algorithms for handling data sets larger
than main memory cannot be used.

 Do not support continuous queries

 Too slow real-time response

11

Computation Model

12

Stream

Processing

Engine

(Approximate)

 Answer

Data Streams

Synopsis in Memory

Decision Making

Model Components

• Synopsis

▫ Summary of the data

 Samples, …

• Processing Engine

▫ Implementation/Management System

 STREAM (Stanford): general-purpose

 Aurora (Brown/MIT): sensor monitoring, dataflow

 Telegraph (Berkeley): adaptive engine for sensors

• Decision Making

13

DSMS vs DBMS (1)

• Traditional DBMS:

▫ data stored in finite, persistent data sets

• Data Streams:

▫ distributed, continuous, unbounded, rapid, time varying, noisy, . .

• Data-Stream Management: variety of modern applications
▫ Network monitoring and traffic engineering

▫ Sensor networks

▫ Telecom call-detail records

▫ Network security

▫ Financial applications

▫ Manufacturing processes

▫ Web logs and clickstreams

▫ Other massive data sets…

14

DSMS vs DBMS (2)

15

Query Processing

Continuous Query (CQ) Result

Query Processing

Main Memory Data Stream(s) Data Stream(s)

Disk

Main Memory

SQL Query Result

DSMS vs DBMS (3)

Feature DBMS DSMS

Model Persistent Data Transient Data

Table Set or Bag of Tuples Infinite Sequence of Tuples

Updates All Append Only

Queries Transient Persistent

Query Answers Exact Often Approximate

Query Evaluation Multi-Pass One Pass

Operators Blocking and Non-Blocking Non-Blocking

Query Plan Fixed Adaptive

Data Processing Synchronous Asynchronous

Concurrency High Low

16

Queries

• DBMS:

▫ one-time (transient) queries

• DSMS:

▫ continuous (persistent) queries

• Unbounded memory requirements

• Blocking operators: window techniques

• Queries referencing past data

• DBMS:

▫ (mostly) exact query answer

• DSMS:

▫ (mostly) approximate query answer

17

Query Languages

• Stream query language issues (windows)

• SQL-like proposals suitably extended for a stream
environment:

• Query operators (selection/projection, join, aggregation)

• Examples:

▫ GSQL (Gigascope)

▫ CQL (STREAM)

▫ EPL (ESPER)

18

19

Big Data Technology Stack

20

Big Data Execution Engine

• Features

▫ Scalable

▫ Fault Tolerant

▫ Parallelism

• Infrastructure Processing

▫ Commodity Clustered Machines

• Programming Models

▫ A programming model is the fundamental style and interfaces for

developers to write computing programs and applications.

• Instance of Execution Engines:

▫ MapReduce, Spark, Stratosphere, Dryad, Hyracks, ...

21

Main Characteristics of Distributed

Execution Engines

• The design purpose of Distributed Execution Engines is to

consider the fundamental characteristics which are as follows:

▫ Task Scheduling

▫ Data Distribution

▫ Load Balancing

▫ Transparent Fault Tolerance

▫ Control Flow

▫ Tracking Dependencies

22

Big Data Processing Platforms

23

Type of Processing Systems (1)

• Batch Processing Systems

▫ Batch processing involves operating over a large, static dataset and

returning the result at a later time when the computation is complete.

• The datasets in batch processing are typically...

▫ Bounded: batch datasets represent a finite collection of data

▫ Persistent: data is almost always backed by some type of permanent

storage

▫ Large: batch operations are often the only option for processing

extremely large sets of data

▫ Batch processing is well-suited for calculations where access to a

complete set of records is required.

24

Type of Processing Systems (2)

• Stream Processing Systems

▫ Stream processing systems compute over data as it enters the system.

▫ Instead of defining operations to apply to an entire dataset, stream

processors define operations that will be applied to each individual data

item as it passes through the system.

• The datasets in stream processing are considered "unbounded". This

has a few important implications:

▫ The total dataset is only defined as the amount of data that has entered

the system so far.

▫ The working dataset is perhaps more relevant, and is limited to a single

item at a time.

▫ Processing is event-based and does not "end" until explicitly stopped.

Results are immediately available and will be continually updated as

new data arrives.

25

Processing Types of Big Data

Processing Frameworks
• Batch-only frameworks:

▫ Apache Hadoop

• Stream-only frameworks:

▫ Apache Storm

▫ Apache Samza

• Hybrid frameworks:

▫ Apache Spark

▫ Apache Flink

26

Batch-only frameworks

27

Apache Hadoop

• Apache Hadoop is a processing framework that exclusively

provides batch processing.

28

Stream-only frameworks/Kappa Architecture

29

Apache Storm (1)

• Scalable Stream Processing Platform by Twitter

• Tuple wise computation

• Programs are represented in a Topology graph

▫ vertices are computations / data transformations

▫ edges represent data streams between the computation
nodes

▫ streams consist of an unbounded sequence of data-
items/tuples

• Low-level stream processing engine

30

Apache Storm (2)

31

Apache Storm (3)

32

Apache Storm (4)

33

Apache Storm (5)

34

Storm Cluster

35

Apache Samza

• Apache Samza is a stream processing framework that is tightly tied

to the Apache Kafka messaging system.
• While Kafka can be used by many stream processing systems,

Samza is designed specifically to take advantage of Kafka's unique
architecture and guarantees.

• It uses Kafka to provide fault tolerance, buffering, and state storage.

• Apache Samza is a good choice for streaming workloads where
Hadoop and Kafka are either already available or sensible to
implement.

• Samza itself is a good fit for organizations with multiple teams
using (but not necessarily tightly coordinating around) data streams
at various stages of processing.

• Samza greatly simplifies many parts of stream processing and offers
low latency performance.

36

Hybrid Processing Systems: Batch and

Stream Processors/Lambda processing
• Some processing frameworks can handle both batch and stream

workloads.

▫ These frameworks simplify diverse processing requirements by allowing

the same or related components and APIs to be used for both types of data.

37

Apache Spark (1)

• Initially started at UC Berkeley in 2009

• Apache Spark is a next generation batch processing framework with
stream processing capabilities.

• Fast and general purpose cluster computing system

• 10x (on disk) - 100x (In-Memory) faster

• Most popular for running Iterative Machine Learning Algorithms.

• Provides high level APIs in

▫ Java

▫ Scala

▫ Python

• Spark Streaming is a good stream processing solution for workloads
that value throughput over latency.

• Integration with Hadoop and its eco-system and can read existing
data.

38

Apache Spark (2)

• Distributed data analytics engine, generalizing
Map/Reduce

• Core engine, with streaming, SQL, machine learning,
and graph processing modules

39

Spark vs Hadoop

40

Spark Architecture

41

Spark Ecosystem

42

Resilient Distributed Dataset (RDD)

• RDDs represent data or transformations on data
• RDDs Stands for:

▫ Resilient: Fault tolerant and is capable of rebuilding data
on failure

▫ Distributed: Distributed data among the multiple nodes in
a cluster

▫ Dataset: Collection of partitioned data with values

• With RDDs, you can perform two types of operations:
▫ Transformations: They are the operations that are applied

to create a new RDD.

▫ Actions: They are applied on an RDD to instruct Apache
Spark to apply computation and pass the result back to the
driver.

43

DataFrame & Dataset

• DataFrame:

▫ Unlike an RDD, data organized into named columns, e.g. a
table in a relational database.

▫ Imposes a structure onto a distributed collection of data,
allowing higher-level abstraction

• Dataset:

▫ Extension of DataFrame API which provides type-safe,
object-oriented programming interface (compile-time error
detection)

• Both built on Spark SQL engine & use Catalyst to
generate optimized logical and physical query plan; both
can be converted to an RDD

44

Workflow of RDD

45

Spark Cluster Architecture

46

Spark Architecture Infographic

47

Spark Streaming (1)

• Discretized Stream Processing

• Run a streaming computation as a series of very small,
deterministic batch jobs

▫ Chop up the live stream into batches of X seconds

▫ Spark treats each batch of data as RDDs and processes
them using RDD operations

▫ Finally, the processed results of the RDD operations are
returned in batches

48

Spark Streaming (2)

49

Data
Stream
Source

Spark
Streaming

Spark

Live Data Stream Discretized Stream

Batches of X Seconds

Processed Results

Spark Streaming (3)

50

Spark
Streaming

Spark

Micro Batch

batch @ t+2 batch @ t+1 batch @ t

stored in memory as
an RDD (immutable,

distributed)

DStream:
a sequence of

RDDs
representing a
stream of data

Spark Streaming (4)

51

Spark
Streaming

Spark

Micro Batch

batch @ t+2 batch @ t+1 batch @ t

DStream:

Transformation
Function

New RDDs
Created for
Every Batch

transformation:
modify data in one
Dstream to create
another DStream

Example 1– Get hashtags from Twitter

52

Example 2 – Count the hashtags

53

Big Data Processing Frameworks Comparison

• There are plenty of options for processing within a big data system.

▫ For batch-only workloads that are not time-sensitive, Hadoop is a good

choice that is likely less expensive to implement than some other

solutions.

▫ For stream-only workloads, Storm has wide language support and can

deliver very low latency processing, but can deliver duplicates and

cannot guarantee ordering in its default configuration.

▫ For mixed workloads, Spark provides high speed batch processing and

micro-batch processing for streaming. It has wide support, integrated

libraries and tooling, and flexible integrations.

▫ The best fit for your situation will depend heavily upon the state of the

data to process

54

Kafka

• As distributed systems and services increasingly become
part of a modern architecture, this makes for a fragile
system

55

Why is Kafka needed?

• Real time streaming data processed for real time
analytics

▫ Service calls, track every call, IOT sensors

• Apache Kafka is a fast, scalable, durable, and fault
tolerant publish-subscribe messaging system

• Kafka is
▫ higher throughput, reliability and replication

• Kafka can works in combination with

▫ Spark Streaming, Storm, HBase and Spark for real-time
analysis and processing of streaming data

56

The World Produces Data

57

Producers

58

Kafka Brokers

59

Kafka Brokers

60

Key terminology

• Kafka maintains feeds of messages in categories called
topics.

• Processes that publish messages to a Kafka topic are
called producers

• Processes that subscribe to topics and process the feed of
published messages are called consumers.

• Kafka is run as a cluster comprised of one or more
servers each of which is called a broker.

• Communication between all components is done via a
high performance simple binary API over TCP protocol

61

Kafka Architecture

62

Topics

• Topics:

▫ Streams of “related” Messages in Kafka

▫ Is a Logical Representation

▫ Categorizes Messages into Groups

• Developers define Topics

• Producer - Topic: N to N Relation

• Unlimited Number of Topics

63

64

