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What is Streaming 

• Streaming is unstructured data that is generated 
continuously by thousands of data sources. 

• This Streaming data includes a wide variety of data such 
as 

▫ log files generated by customers using your mobile or web 
applications, in-game player activity, information from 
social networks, Financial trading and telemetry from 
connected devices or instrumentation in data centers. 
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Data Streams - Terms 

• A data stream is a (potentially unbounded) sequence of tuples 

• Each tuple consist of a set of attributes, similar to a row in database 
table 

• Transactional data streams: log interactions between entities 

▫ Credit card: purchases by consumers from merchants 

▫ Telecommunications: phone calls by callers to dialed parties 

▫ Web: accesses by clients of resources at servers 

• Measurement data streams: monitor evolution of entity states 

▫ Sensor networks: physical phenomena, road traffic 

▫ IP network: traffic at router interfaces 

▫ Earth climate: temperature, moisture at weather stations 
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Data Models 

• Real-time data stream: sequence of items that arrive in 
some order and may only be seen once. 

• Stream items: like relational tuples 

▫ Relation-based: e.g., STREAM, TelegraphCQ and Borealis 

▫ Object-based: e.g., COUGAR, Tribecca 

• Window models 

▫ Direction of movements of the endpoints: fixed window, 
sliding window, landmark window 

▫ Time-based vs. Tuple-based 

▫ Update interval: eager (for each new arriving), lazy (batch 
processing), non-overlapping tumbling windows. 
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More on Windows 

• Mechanism for extracting a finite relation from an 
infinite stream 
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Timestamps 

• Used for tuple ordering and by the DSMS for defining 
window sizes (time-based) 

• Useful for the user to know when the tuple originated 

• Explicit:  

▫ set by the source of data 

• Implicit:  

▫ set by DSMS, when it has arrived 

• Ordering is an issue 

• Distributed systems:  

▫ no exact notion of time 
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Characteristics of Data Streams 

• Data Streams Model: 

▫ Data enters at a high speed rate 

▫ The system cannot store the entire stream, but only a small 
fraction 

▫ How do you make critical calculations about the stream 
using a limited amount of memory? 

• Characteristics 

▫ Huge volumes of continuous data, possibly infinite 

▫ Fast changing and requires fast, real-time response 

▫ Random access is expensive—single scan algorithms(can 
only have one look) 
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Architecture: Stream Query Processing 
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Stream Data Applications 

• Telecommunication calling records 

• Business: credit card transaction flows 

• Network monitoring and traffic engineering 

• Financial market: stock exchange 

• Engineering & industrial processes: power supply & 
manufacturing 

• Sensor, monitoring & surveillance: video streams, RFIDs 

• Web logs and Web page click streams 

• Massive data sets (even saved but random access is too 
expensive) 

10 



Problems/Challenges 

• Zillions of data 

▫ Continuous/Unbounded 

▫ Examples arrive faster than they can be mined 

▫ Application may require fast, real-time response 

• Time/Space constrained 

▫ Not enough memory 

▫ Can’t afford storing/revisiting the data 

 Single pass computation 

▫ External memory algorithms for handling data sets larger 
than main memory cannot be used. 

 Do not support continuous queries 

 Too slow real-time response 
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Computation Model 
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Model Components 

• Synopsis 

▫ Summary of the data 

 Samples, … 

• Processing Engine 

▫ Implementation/Management System 

 STREAM (Stanford): general-purpose 

 Aurora (Brown/MIT): sensor monitoring, dataflow 

 Telegraph (Berkeley): adaptive engine for sensors 

• Decision Making 
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DSMS vs DBMS (1) 

• Traditional DBMS: 

▫ data stored in finite, persistent data sets 

• Data Streams: 

▫ distributed, continuous, unbounded, rapid, time varying, noisy, . .  

• Data-Stream Management: variety of modern applications 
▫ Network monitoring and traffic engineering 

▫ Sensor networks 

▫ Telecom call-detail records 

▫ Network security  

▫ Financial applications 

▫ Manufacturing processes 

▫ Web logs and clickstreams 

▫ Other massive data sets… 
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DSMS vs DBMS (2) 
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DSMS vs DBMS (3) 

Feature DBMS DSMS 

Model Persistent Data Transient Data 

Table Set or Bag of Tuples Infinite Sequence of Tuples 

Updates All Append Only 

Queries Transient Persistent 

Query Answers Exact Often Approximate 

Query Evaluation Multi-Pass One Pass 

Operators Blocking and Non-Blocking Non-Blocking 

Query Plan Fixed Adaptive 

Data Processing Synchronous Asynchronous 

Concurrency High Low 
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Queries 

• DBMS:  

▫ one-time (transient) queries 

• DSMS:  

▫ continuous (persistent) queries 

• Unbounded memory requirements 

• Blocking operators: window techniques 

• Queries referencing past data 

• DBMS:  

▫ (mostly) exact query answer 

• DSMS:  

▫ (mostly) approximate query answer 
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Query Languages 

• Stream query language issues (windows) 

• SQL-like proposals suitably extended for a stream 
environment: 

• Query operators (selection/projection, join, aggregation) 

• Examples: 

▫ GSQL (Gigascope) 

▫ CQL (STREAM) 

▫ EPL (ESPER) 

 

18 



19 



Big Data Technology Stack 

 

20 



Big Data Execution Engine 

• Features 

▫ Scalable 

▫ Fault Tolerant 

▫ Parallelism 

• Infrastructure Processing 

▫ Commodity Clustered Machines 

• Programming Models 

▫ A programming model is the fundamental style and interfaces for 

developers to write computing programs and applications. 

• Instance of Execution Engines: 

▫ MapReduce, Spark, Stratosphere, Dryad, Hyracks, ... 
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Main Characteristics of Distributed 

Execution Engines 

• The design purpose of Distributed Execution Engines is to 

consider the fundamental characteristics which are as follows: 

▫ Task Scheduling 

▫ Data Distribution 

▫ Load Balancing 

▫ Transparent Fault Tolerance 

▫ Control Flow 

▫ Tracking Dependencies 
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Big Data Processing Platforms 
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Type of Processing Systems (1) 

• Batch Processing Systems 

▫ Batch processing involves operating over a large, static dataset and 

returning the result at a later time when the computation is complete. 

• The datasets in batch processing are typically... 

▫ Bounded: batch datasets represent a finite collection of data 

▫ Persistent: data is almost always backed by some type of permanent 

storage 

▫ Large: batch operations are often the only option for processing 

extremely large sets of data 

▫ Batch processing is well-suited for calculations where access to a 

complete set of records is required. 
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Type of Processing Systems (2) 

• Stream Processing Systems 

▫ Stream processing systems compute over data as it enters the system. 

▫ Instead of defining operations to apply to an entire dataset, stream 

processors define operations that will be applied to each individual data 

item as it passes through the system. 

• The datasets in stream processing are considered "unbounded". This 

has a few important implications: 

▫ The total dataset is only defined as the amount of data that has entered 

the system so far. 

▫ The working dataset is perhaps more relevant, and is limited to a single 

item at a time. 

▫ Processing is event-based and does not "end" until explicitly stopped. 

Results are immediately available and will be continually updated as 

new data arrives. 
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Processing Types of Big Data 

Processing Frameworks 
• Batch-only frameworks: 

▫ Apache Hadoop 

• Stream-only frameworks: 

▫ Apache Storm 

▫ Apache Samza 

• Hybrid frameworks: 

▫ Apache Spark 

▫ Apache Flink 
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Batch-only frameworks 
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Apache Hadoop 

• Apache Hadoop is a processing framework that exclusively 

provides batch processing. 
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Stream-only frameworks/Kappa Architecture  
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Apache Storm (1) 

• Scalable Stream Processing Platform by Twitter  

• Tuple wise computation 

• Programs are represented in a Topology graph 

▫ vertices are computations / data transformations 

▫ edges represent data streams between the computation 
nodes 

▫ streams consist of an unbounded sequence of data-
items/tuples 

• Low-level stream processing engine 
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Apache Storm (2) 
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Apache Storm (3) 
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Apache Storm (4) 
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Apache Storm (5) 
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Storm Cluster 
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Apache Samza 

• Apache Samza is a stream processing framework that is tightly tied 

to the Apache Kafka messaging system.  
• While Kafka can be used by many stream processing systems, 

Samza is designed specifically to take advantage of Kafka's unique 
architecture and guarantees. 

• It uses Kafka to provide fault tolerance, buffering, and state storage. 

• Apache Samza is a good choice for streaming workloads where 
Hadoop and Kafka are either already available or sensible to 
implement. 

• Samza itself is a good fit for organizations with multiple teams 
using (but not necessarily tightly coordinating around) data streams 
at various stages of processing. 

• Samza greatly simplifies many parts of stream processing and offers 
low latency performance. 
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Hybrid Processing Systems: Batch and 

Stream Processors/Lambda processing 
• Some processing frameworks can handle both batch and stream 

workloads.  

▫ These frameworks simplify diverse processing requirements by allowing 

the same or related components and APIs to be used for both types of data. 
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Apache Spark (1) 

• Initially started at UC Berkeley in 2009 

• Apache Spark is a next generation batch processing framework with 
stream processing capabilities.  

• Fast and general purpose cluster computing system 

• 10x (on disk) - 100x (In-Memory) faster 

• Most popular for running Iterative Machine Learning Algorithms. 

• Provides high level APIs in 

▫ Java 

▫ Scala 

▫ Python 

• Spark Streaming is a good stream processing solution for workloads 
that value throughput over latency. 

• Integration with Hadoop and its eco-system and can read existing 
data. 
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Apache Spark (2) 

• Distributed data analytics engine, generalizing 
Map/Reduce 

• Core engine, with streaming, SQL, machine learning, 
and graph processing modules 
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Spark vs Hadoop 
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Spark Architecture 
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Spark Ecosystem  
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Resilient Distributed Dataset (RDD) 

• RDDs represent data or transformations on data 
• RDDs Stands for: 

▫ Resilient: Fault tolerant and is capable of rebuilding data 
on failure  

▫ Distributed: Distributed data among the multiple nodes in 
a cluster  

▫ Dataset: Collection of partitioned data with values  

• With RDDs, you can perform two types of operations: 
▫ Transformations: They are the operations that are applied 

to create a new RDD.  

▫ Actions: They are applied on an RDD to instruct Apache 
Spark to apply computation and pass the result back to the 
driver.  
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DataFrame & Dataset 

• DataFrame: 

▫ Unlike an RDD, data organized into named columns, e.g. a 
table in a relational database. 

▫ Imposes a structure onto a distributed collection of data, 
allowing higher-level abstraction 

• Dataset: 

▫ Extension of DataFrame API which provides type-safe, 
object-oriented programming interface (compile-time error 
detection) 

• Both built on Spark SQL engine & use Catalyst to 
generate optimized logical and physical query plan; both 
can be converted to an RDD 
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Workflow of RDD 

 

45 



Spark Cluster Architecture 
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Spark Architecture Infographic  
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Spark Streaming (1) 

• Discretized Stream Processing 

• Run a streaming computation as a series of very small, 
deterministic batch jobs 

▫ Chop up the live stream into batches of X seconds 

▫ Spark treats each batch of data as RDDs and processes 
them using RDD operations 

▫ Finally, the processed results of the RDD operations are 
returned in batches 
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Spark Streaming (2) 
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Spark Streaming (3) 
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Spark Streaming (4) 
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Example 1– Get hashtags from Twitter  
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Example 2 – Count the hashtags 
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Big Data Processing Frameworks Comparison 

• There are plenty of options for processing within a big data system. 

▫ For batch-only workloads that are not time-sensitive, Hadoop is a good 

choice that is likely less expensive to implement than some other 

solutions. 

▫ For stream-only workloads, Storm has wide language support and can 

deliver very low latency processing, but can deliver duplicates and 

cannot guarantee ordering in its default configuration. 

▫ For mixed workloads, Spark provides high speed batch processing and 

micro-batch processing for streaming. It has wide support, integrated 

libraries and tooling, and flexible integrations.  

▫ The best fit for your situation will depend heavily upon the state of the 

data to process 
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Kafka 

• As distributed systems and services increasingly become 
part of a modern architecture, this makes for a fragile 
system 
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Why is Kafka needed? 

• Real time streaming data processed for real time 
analytics 

▫ Service calls, track every call, IOT sensors 

• Apache Kafka is a fast, scalable, durable, and fault 
tolerant publish-subscribe messaging system 

• Kafka is  
▫ higher throughput, reliability and replication 

• Kafka can works in combination with 

▫ Spark Streaming, Storm, HBase and Spark for real-time 
analysis and processing of streaming data 
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The World Produces Data 
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Producers 
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Kafka Brokers 
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Kafka Brokers 
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Key terminology 

• Kafka maintains feeds of messages in categories called 
topics. 

• Processes that publish messages to a Kafka topic are 
called producers 

• Processes that subscribe to topics and process the feed of 
published messages are called consumers. 

• Kafka is run as a cluster comprised of one or more 
servers each of which is called a broker. 

• Communication between all components is done via a 
high performance simple binary API over TCP protocol 
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Kafka Architecture 
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Topics 

• Topics:  

▫ Streams of “related” Messages in Kafka 

▫ Is a Logical Representation 

▫ Categorizes Messages into Groups 

• Developers define Topics 

• Producer - Topic: N to N Relation 

• Unlimited Number of Topics 
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