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Agenda

« Data Stream Concepts
= What is Data Stream?
= Data Stream Applications
= Data Stream Challenges
= Data Stream Processing Model & Architecture
= DSMS vs DBMS

 Data Stream Distributed Processing Platforms
= Big Data Technology Stack
= Type of Processing Systems
= Storm
= Spark
= Kafka
« Running Example With Spark
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What Is Streaming

- Streaming is unstructured data that is generated
continuously by thousands of data sources.

 This Streaming data includes a wide variety of data such
as

= log files generated by customers using your mobile or web
applications, in-game player activity, information from
social networks, Financial trading and telemetry from
connected devices or instrumentation in data centers.
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Data Streams - Terms

A data stream is a (potentially unbounded) sequence of tuples

Each tuple consist of a set of attributes, similar to a row in database
table

Transactional data streams: log interactions between entities

> Credit card: purchases by consumers from merchants

» Telecommunications: phone calls by callers to dialed parties
s 'Web: accesses by clients of resources at servers
Measurement data streams: monitor evolution of entity states
= Sensor networks: physical phenomena, road traffic

= TP network: traffic at router interfaces

» Earth climate: temperature, moisture at weather stations
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Data Models

- Real-time data stream: sequence of items that arrive in
some order and may only be seen once.

« Stream items: like relational tuples
= Relation-based: e.g., STREAM, TelegraphCQ and Borealis
= Object-based: e.g., COUGAR, Tribecca

« Window models

= Direction of movements of the endpoints: fixed window,
sliding window, landmark window

= Time-based vs. Tuple-based

= Update interval: eager (for each new arriving), lazy (batch
processing), non-overlapping tumbling windows.



More on Windows

e Mechanism for extracting a finite relation from an

infinite stream
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Timestamps

Used for tuple ordering and by the DSMS for defining
window sizes (time-based)

Usetul for the user to know when the tuple originated
Explicit:

= set by the source of data

Implicit:

= set by DSMS, when it has arrived

Ordering is an issue

Distributed systems:
= no exact notion of time



Characteristics of Data Streams

 Data Streams Model:
= Data enters at a high speed rate
= The system cannot store the entire stream, but only a small
fraction
= How do you make critical calculations about the stream
using a limited amount of memory?
« Characteristics
= Huge volumes of continuous data, possibly infinite
= Fast changing and requires fast, real-time response

= Random access is expensive—single scan algorithms(can
only have one look)



Architecture: Stream Query Processing

SDMS (Stream Data User/Application
Management System)

Continuous Query

Results
v
Multiple streams
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Scratch Space D S

(Main memory and/or Disk)
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Stream Data Applications

« Telecommunication calling records
 Business: credit card transaction flows

« Network monitoring and traffic engineering
- Financial market: stock exchange

- Engineering & industrial processes: power supply &
manufacturing

 Sensor, monitoring & surveillance: video streams, RFIDs
« Web logs and Web page click streams

« Massive data sets (even saved but random access is too
expensive)
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Problems/Challenges

- Zillions of data

= Continuous/Unbounded

= Examples arrive faster than they can be mined

= Application may require fast, real-time response
- Time/Space constrained

s Not enough memory

» Can’t afford storing/revisiting the data
- Single pass computation
= External memory algorithms for handling data sets larger
than main memory cannot be used.
- Do not support continuous queries
- Too slow real-time response
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Computation Model
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Model Components

« Synopsis
> Summary of the data
- Samples, ...
» Processing Engine
= Implementation/Management System
- STREAM (Stanford): general-purpose

- Aurora (Brown/MIT): sensor monitoring, dataflow
- Telegraph (Berkeley): adaptive engine for sensors

 Decision Making
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DSMS vs DBMS (1)

« Traditional DBMS:
» data stored in finite, persistent data sets

« Data Streams:

o distributed, continuous, unbounded, rapid, time varying, noisy, . .
- Data-Stream Management: variety of modern applications

= Network monitoring and traffic engineering

= Sensor networks

» Telecom call-detail records

= Network security

» Financial applications

» Manufacturing processes

> 'Web logs and clickstreams

> Other massive data sets...
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DSMS vs DBMS (2)

SQL Query /R§SU|t Continuous Query (CQ) Result
Query Processing Query Processing
Main Memory .
Data Stream(s) Main Memory Data Stream(>

{}
Disk {} i
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DSMS vs DBMS (3)
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Queries

DBMS:

= one-time (transient) queries

DSMS:

= continuous (persistent) queries
Unbounded memory requirements
Blocking operators: window techniques
Queries referencing past data

DBMS:
= (mostly) exact query answer
DSMS:

= (mostly) approximate query answer
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Query Languages

Stream query language issues (windows)

SQL-like proposals suitably extended for a stream
environment:

Query operators (selection/projection, join, aggregation)
Examples:

s GSQL (Gigascope)

> CQL (STREAM)

o EPL (ESPER)
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Big Data Technology Stack
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Big Data Execution Engine

Features

= Scalable

= Fault Tolerant

= Parallelism

Infrastructure Processing

= Commodity Clustered Machines
Programming Models

= A programming model is the fundamental style and interfaces for
developers to write computing programs and applications.

Instance of Execution Engines:
= MapReduce, Spark, Stratosphere, Dryad, Hyracks, ...
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Main Characteristics of Distributed
Execution Engines

 The design purpose of Distributed Execution Engines is to
consider the fundamental characteristics which are as follows:
= Task Scheduling
= Data Distribution
= Load Balancing
= Transparent Fault Tolerance
= Control Flow
= Tracking Dependencies
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Big Data Processing Platforms
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Type of Processing Systems (1)

 Batch Processing Systems
= Batch processing involves operating over a large, static dataset and
returning the result at a later time when the computation is complete.
« The datasets in batch processing are typically...
= Bounded: batch datasets represent a finite collection of data

= Persistent: data is almost always backed by some type of permanent
storage

= Large: batch operations are often the only option for processing
extremely large sets of data

= Batch processing is well-suited for calculations where access to a
complete set of records is required.
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Type of Processing Systems (2)

 Stream Processing Systems

= Stream processing systems compute over data as it enters the system.

= |nstead of defining operations to apply to an entire dataset, stream
processors define operations that will be applied to each individual data
item as it passes through the system.

« The datasets in stream processing are considered "unbounded". This
has a few important implications:

= The total dataset is only defined as the amount of data that has entered
the system so far.

= The working dataset is perhaps more relevant, and is limited to a single
item at a time.

= Processing is event-based and does not "end" until explicitly stopped.

Results are immediately available and will be continually updated as
new data arrives.
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Processing Types of Big Data
Processing Frameworks

 Batch-only frameworks:
= Apache Hadoop
 Stream-only frameworks:
= Apache Storm
= Apache Samza
« Hybrid frameworks:
= Apache Spark
= Apache Flink



Batch-only frameworks

Periodic analysis job

Batch Processor
Consumer

Periodic ingestion

T
A

Job scheduler




Apache Hadoop

« Apache Hadoop is a processing framework that exclusively
provides batch processing.

BATCH INTERACTIVE ONLINE STREAMING GRAPH IN-MEMORY HPC MPI (g:::::)
, (MapReduce) (Tez) (HBase) (Storm, S4,..)J] (Giraph) (Spark) (OpenMPI) (Weave...)

B
\‘ YARN (Cluster Resource Management)

NS5 HDFS2 (Redundant, Reliable Storage)




Stream-only frameworks/Kappa Architecture

Forward events Process at event time &
immediately to update serving layer
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Apache Storm (1) @

» Scalable Stream Processing Platform by Twitter
» Tuple wise computation
- Programs are represented in a Topology graph

= vertices are computations / data transformations

= edges represent data streams between the computation
nodes

= streams consist of an unbounded sequence of data-
items/tuples

« Low-level stream processing engine



Apache Storm (2)

Topology:
The source of a stream Computation vertices are
is called SpOUL. called bOIL.
(listening to data feed) (doing data manipulation)

Va

Compu-
_A tation

Computation Computation
result stream result stream




Apache Storm (3)

Tuple stream w‘c stream

Tuple stream

nput data source Spout Bolt
Tuple
stream Tuple stream
Stream source Tuple stream
ntraction
with
data base

Data storage
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Apache Storm (4)

Components Description

Tuple is the main data structure in Storm. It is a list of ordered elements.

Tuple By default, a Tuple supports all data types. Generally, it is modelled as a
set of comma separated values |ar1d passed to a Storm cluster.

Stream Stream is an unordered sequence of tuples.

Source of stream. Generally, Storm accepts input data from raw data
sources like Twitter Streaming API, Apache Kafka queue, Kestrel queue,
Spouts etc. Otherwise you can write spouts to read data from datasources.
"ISpout" is the core interface for implementing spouts. Some of the
specific interfaces are IRichSpout, BaseRichSpout, KafkaSpout, etc.

Bolts are logical processing units. Spouts pass data to bolts and bolts
process and produce a new output stream. Bolts can perform the
Bolts operations of filtering, ag!gregation, joining, interacting with data sources
and databases. Bolt receives data and emits to one or more bolts. "IBolt”

is the core interface for implementing bolts. Some of the common
interfaces are IRichBolt, IBasicBolt, etc.
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Apache Storm (5)

Reads tweets

Twitter [
Streaming API l

Spout

Qutputs stream of tweet tuple { "jon", "Hello everybody” }

Bolt

output word and its count

{ “jon", "hello”, 1}
{ “jon", "everybody", 1 }
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Storm Cluster

Storm Cluster

Workers
- 5 ) Worker Process
- Hpervisor Executor Executor
Task Task
Task Task
Nimbus
Master Node <= ZooKeeper Framework

Worker node

Y

Worker process

> Supervisor

4

Worker process

Worker node
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Apache Samza

« Apache Samza is a stream processing framework that is tightly tied
to the Apache Kafka messaging system.

« While Kafka can be used by many stream processing systems,
Samza is designed specifically to take advantage of Kafka's unique
architecture and guarantees.

« |t uses Kafka to provide fault tolerance, buffering, and state storage.

« Apache Samza is a good choice for streaming workloads where
Hadoop and Kafka are either already available or sensible to
Implement.

- Samza itself is a good fit for organizations with multiple teams
using (but not necessarily tightly coordinating around) data streams
at various stages of processing.

« Samza greatly simplifies many parts of stream processing and offers
low latency performance.



Hybrid Processing Systems: Batch and

Stream Processors/Lambda processing

« Some processing frameworks can handle both batch and stream
workloads.

= These frameworks simplify diverse processing requirements by allowing
the same or related components and APIs to be used for both types of data.

SDU rce

)
/Vy
SDUI’CE _
Serving

Messaging
layer

System
Batch job(s) for
analysis

Consumer

i‘u

Job scheduler
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Apache Spark (1)

- Initially started at UC Berkeley in 2009

« Apache Spark is a next generation batch processing framework with
stream processing capabilities.

- Fast and general purpose cluster computing system
 10x (on disk) - 100x (In-Memory) faster
« Most popular for running Iterative Machine Learning Algorithms.
 Provides high level APIs in
= Java
= Scala
= Python
- Spark Streaming is a good stream processing solution for workloads
that value throughput over latency.

 Integration with Hadoop and its eco-system and can read existing
data.
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Apache Spark (2)

- Distributed data analytics engine, generalizing
Map/Reduce

 Core engine, with streaming, SQL, machine learning,
and graph processing modules

Open Source
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Spark vs Hadoop
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Spark Architecture

Worker

Driver Node

Spark Context Cluster Manager

Executors

Worker



Spark Ecosystem
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Resilient Distributed Dataset (RDD)

« RDDs represent data or transformations on data
« RDDs Stands for:

= Resilient: Fault tolerant and is capable of rebuilding data
on failure

= Distributed: Distributed data among the multiple nodes in
a cluster

= Dataset: Collection of partitioned data with values
« With RDDs, you can perform two types of operations:

» Transformations: They are the operations that are applied
to create a new RDD.

= Actions: They are applied on an RDD to instruct Apache
Spark to apply computation and pass the result back to the
driver.
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DataFrame & Dataset

« DataFrame:

= Unlike an RDD, data organized into named columns, e.g. a
table in a relational database.

= Imposes a structure onto a distributed collection of data,
allowing higher-level abstraction
« Dataset:

= Extension of DataFrame API which provides type-safe,
object-oriented programming interface (compile-time error
detection)
 Both built on Spark SQL engine & use Catalyst to
generate optimized logical and physical query plan; both
can be converted to an RDD



Workflow of RDD
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Spark Cluster Architecture

Worker Node

Master Node

Cache

Driver Program

Cluster
Manager

Worker Node

Cache



Spark Architecture Infographic

Client
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Spark Streaming (1)

» Discretized Stream Processing

- Run a streaming computation as a series of very small,
deterministic batch jobs
s Chop up the live stream into batches of X seconds

= Spark treats each batch of data as RDDs and processes
them using RDD operations
= Finally, the processed results of the RDD operations are

returned in batches e data <t
Ive data stream Spark

N\ H\ T nd Streaming
—

batches of_)( seconds —
[—

R Spark
processed results




Spark Streaming (2)

Live Data Stream Discretized Stream Processed Results

Data Spark
ream ﬁ k . I I N . »
e Streaming E ﬁ T 7 /‘ SpArk

Batches of X Seconds



Spark Streaming (3)

Micro Batch

e

Spark
Streaming | e Spark

~ DStream: stored in memory as
a sequence of i an RDD (immutable,

RDDs distributed)
representing a
_stream of data




Spark Streaming (4)

Micro Batch

R

Spark
Streaming | mamal  Spark

DStream:

Transformation
Function

transformation:

modify data in one
Dstream to create

another DStream

N

Created for

Every Batch



Example 1— Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

‘ new DStream l [ transformation: modify data in one Dstream to create another DStream ]

Lbach@t. |batch@ixl] bach@i2l |

tweets DStream

BhLLG B

flatMap

PP PP PhiP
flatMap flatMap
hashTags Dstream Lbbl<" new RDDs created for ]

N TR T T T T T
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Example 2 — Count the hashtags

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.countByValue()

tweets

hashTags

tagCounts
[(#cat, 10), (#dog, 25),

I

batch @ t batch @ t+1 batch @ t+2
.ﬂatMap flatMap flatMap
map map = map

o rTrTaT e T _-'_“| oo rTr/aTe

b e ) b
reduceByKey reduceByKey reduceByKey

.1 R () el
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Big Data Processing Frameworks Comparison

« There are plenty of options for processing within a big data system.

= For batch-only workloads that are not time-sensitive, Hadoop is a good
choice that is likely less expensive to implement than some other
solutions.

= For stream-only workloads, Storm has wide language support and can
deliver very low latency processing, but can deliver duplicates and
cannot guarantee ordering in its default configuration.

= For mixed workloads, Spark provides high speed batch processing and
micro-batch processing for streaming. It has wide support, integrated
libraries and tooling, and flexible integrations.

= The best fit for your situation will depend heavily upon the state of the
data to process
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Kafka

« As distributed systems and services increasingly become
part of a modern architecture, this makes for a fragile

system
Client Backend e
Client Ui
Client ;\:glgﬁ:i ol
Client Q:f»?;ﬁcr: [
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Why Is Kafka needed?

Real time streaming data processed for real time
analytics

= Service calls, track every call, IOT sensors

Apache Kafka is a fast, scalable, durable, and fault
tolerant publish-subscribe messaging system
Kafka is

= higher throughput, reliability and replication

Kafka can works in combination with

= Spark Streaming, Storm, HBase and Spark for real-time
analysis and processing of streaming data



The World Produces Data
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Producers
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Kafka Brokers
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Kafka Brokers
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Key terminology

- Kafka maintains feeds of messages in categories called
topics.

» Processes that publish messages to a Kafka topic are
called producers

« Processes that subscribe to topics and process the feed of
published messages are called consumers.

- Kafka is run as a cluster comprised of one or more
servers each of which is called a broker-.

- Communication between all components is done via a
high performance simple binary API over TCP protocol
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Kafka Architecture

Pracucer 1

—_—

Froducer 2

Froducer n
L

: ; - Cluster management
. Zookeeper 1 Zookeeper 2 Zookeeper 3 ! - Failure detection & recovery
5 - Store ACLs & secrets
Zookeeper Ensemble '
f\.
Broker 5 f 5
Server 1 Consumer 1
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E:> Serer 2 :> Consumer 2
: E | ; 5
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Topics

Topics:

= Streams of “related” Messages in Kafka
o Is a Logical Representation

= Categorizes Messages into Groups
Developers define Topics

Producer - Topic: N to N Relation
Unlimited Number of Topics
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