
An Overview of Security in CoAP:

Attack and Analysis

S Arvind

TIFAC-CORE in Cyber Security,

Amrita School of Engineering,

Coimbatore,

Amrita Vishwa Vidyapeetham, India

arvind.sundar16@gmail.com

 V Anantha Narayanan
Dept. of Computer Science Engineering,

Amrita School of Engineering,

Coimbatore,

Amrita Vishwa Vidyapeetham, India

v ananthanarayanan@cb.amrita.edu

Abstract— Over the last decade, a technology called Internet of

Things (IoT) has been evolving at a rapid pace. It enables the
development of endless applications in view of availability of
affordable components which provide smart ecosystems. The IoT
devices are constrained devices which are connected to the
internet and perform sensing tasks. Each device is identified by
their unique address and also makes use of the Constrained
Application Protocol (CoAP) as one of the main web transfer
protocols. It is an application layer protocol which does not
maintain secure channels to transfer information. For
authentication and end-to-end security, Datagram Transport
Layer Security (DTLS) is one of the possible approaches to
boost the security aspect of CoAP, in addition to which there are
many suggested ways to protect the transmission of sensitive
information. CoAP uses DTLS as a secure protocol and UDP as a
transfer protocol. Therefore, the attacks on UDP or DTLS could
be assigned as a CoAP attack. An attack on DTLS could possibly
be launched in a single session and a strong authentication
mechanism is needed. Man-In-The-Middle attack is one the peak
security issues in CoAP as cited by Request For Comments(RFC)
7252, which encompasses attacks like Sniffing, Spoofing, Denial of
Service (DoS), Hijacking, Cross-Protocol attacks and other
attacks including Replay attacks and Relay attacks.

In this work, a client-server architecture is setup, whose end
devices communicate using CoAP. Also, a proxy system was
installed across the client side to launch an active interception
between the client and the server. The work will further be
enhanced to provide solutions to mitigate these attacks.

Index Terms—Internet of Things (IoT), Constrained

Application Protocol (CoAP), Datagram Transport Layer
Security (DTLS), User Datagram Protocol (UDP), Denial of
Service (DoS) attacks, Man-In-The-Middle attack, proxy

I. INTRODUCTION TO SAFE AND SECURE

INTERNET OF THINGS

Internet of Things (IoT) is pigeonholed by various

technologies, which is in accordance with the provisioning of

state-of- the-art services in various application domains. The

Internet of Things (IoT) has immensely changed the way we

view, use and interact with smart devices, particularly in the

business world. The way of utilizing the existing and emerging

technologies for sensing, networking and automating has

publicized the fact that it brings major changes in the delivery

of products, goods and services, and thereby enhancing the

socio-economic

impact of these changes. It is anticipated that at least 50 billion

‘things’ will get linked to the Internet by 2020 [4, 6].

For all the amenities that IoT has afford us, there is a point

of concern that every user must contemplate, which is the

security aspect. Anything which is connected to the internet has

the probability of getting hacked or exploited. It has been

reported by security researchers that many solutions deployed

are insecure and have many open security vulnerabilities. Also,

the complex architecture design of the IoT Environment is

being quoted as one of the foremost reasons for the everyday

increase in attack vectors [8, 7].

IoT mainly makes use of the standard protocols and net-

working topologies. But the deployment and the type of the

protocol being used largely determines the normal functioning

of any IoT system. Some of the popular data protocols used are

Constrained Application Protocol (CoAP), Message Queuing

Telemetry Transport (MQTT), Simple Network Management

Protocol (SNMP), Advanced Message Queuing Protocol

(AMQP), OPC Unified Architecture (UA) [8].

Some of the smart devices may be using obsolete protocols,

which may not have been updated often. This leads to the

identification of backdoors and thereby the device getting

hacked easily. One of the recent security hacks was that of the

MQTT and the CoAP Protocols, where the sensitive

information such as user credentials, the messages transmitted

between devices and the device details were leaked. Such

attacks may be attributable to the following reasons:-

• Connecting to unsecured networks

• Having a weak web interface

• Insubstantial encryption mechanisms used

• Dated protocols and malicious Software updates

Though many security measures such as the DTLS and TLS,

and other end-to-end authentication and encryption

mechanisms have been implemented in CoAP and the

architecture operates on the HTTP/REST interactions, the

protocol is still susceptible to risk engaging attacks. Security

risks in CoAP data protocol necessitate attention as they are

being widely used in Device-to-Device communications.

This paper tries to project a new dimension by triggering an

amendment in the temperature and humidity data, using

2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)

978-1-5386-9533-3/19/$31.00 ©2019 IEEE 655

the CoAP proxy model that could deliver a skewed result

altogether in applications like healthcare monitoring.

The paper is structured as follows: Section II provides a

general outline of the Constrained Application Protocol;

Section III analyzes the other research works relating to this

paper ; Section IV reveals the results of performing an attack

on the CoAP Protocol along with the simulation setup; Section

V concludes the paper with the future work and its

implementation thought.

II. AN OUTLINE OF COAP

A. Introduction

Designed as a lightweight machine-to-machine (M2M)

protocol, the CoAP can run on internet-connected devices

where memory and computing resources are scarce.

Fig. 1. General CoAP Architecture

This application layer protocol is mainly used in constrained

environments such as the wireless sensor networks. The main

goal of CoAP is to provide a common web interface for explicit

requirements of the constrained devices. Some of the features

of the protocol include:-

• User Datagram Protocol (UDP)

• Integration of IPv6 with 6LoWPAN

• Support for both unicast and multicast communications

• Client/Server Architecture

• Achievement of less overhead

• Proxying and caching capabilities

• Adoption of DTLS for Security

• Usage of Uniform Resource Indicator (URI) Methods and

HTTP Mapping mechanisms [11, 14]

B. The CoAP Interaction Model

The protocol operates with a Client/Server model in which a

Request is made by the client and a Response is generated from

the Server. This Request/Response functionality is aided by

method codes or response codes and Token options which are

used to match the response to the requests. Each Response

matches with the original message using a unique message ID,

and there are three message types:-

• Confirmable message, which require an

acknowledgement to be sent back to the requesting client

• Non-Confirmable messages, for messages that does not

require an acknowledgement to be sent

• Acknowledgement messages indicate that an explicit

Confirmable Message has been received

• Reset messages indicate that a Confirmable message has

been received, signifying a missing context to process the

incoming message [12]

C. Message Format

The messages which are being communicated between the

end devices are encoded in a binary format. Each message

consists of a Header with fixed length, trailed by an options

field and the payload field whose length is derived from the

datagram length.

Fig. 2. CoAP Message Format

V - Version Number

T - Type of the message

TKL - Token Length

Code - CoAP Request/Response Code

D. Proxying and Caching

One of the aims of an IoT system is to shrink the response

time and thereby reduce the network bandwidth consumption.

For this purpose, a suitable caching mechanism is implemented,

reusing an earlier response message to satisfy a current request

with a prerequisite that a CoAP end-point must not use a stored

response. To determine the freshness of a message in the cache,

a message expiration time is also set to play a fundamental role

in enhancing the security of the messages being transmitted. A

distinctive way of sending the requests is through a proxy,

where messages are transmitted from the proxy on behalf of the

end-points. A Proxy uses a store and forward approach to

accumulate the requests and send it to the end-point on an ad-

hoc basis [11, 13].

E. Method Definitions

Unlike a network request/response communication, where a

HTTP session is initiated, the CoAP works on the

Representational State Transfer Model (REST). In this model,

resources can be accessed from an URL and clients make use

of these resources using the standard HTTP methods such as

GET, PUT, POST and DELETE [11].

F. Mapping

The table 1 describes some of the most frequently generated

HTTP Response codes with which each CoAP response gets

mapped to the request [11].

2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)

656

TABLE I

RESPONSE CODES

HTTP Response Codes CoAP Response Codes

200 – OK 2.00 - OK

201 – Created 2.01 - Created

400 - Bad Request 4.00 - Bad Request

403 – Forbidden 4.03 - Forbidden

404 - Not Found 4.04 - Not Found

501 - Not Implemented 5.01 - Not Implemented

504 - Gateway Timeout 5.04 - Gateway Timeout

G. Resource Discovery

Finding the correct end-points and establishing a

communication with these devices have always been a

challenge in the IoT Systems due to the conceivable

intervention by malicious intruders. The discovery of resources

in CoAP supports the CoRE Link Format as described by IETF

Group. Ultimately, the server decides which resource should be

made available to and discoverable in the network. All the

resources are located in the core directory ‘/.well-known/core

’, which is the URI scheme used in CoAP [11].

H. Binding DTLS with CoAP

With the HTTPS transactions are safeguarded by Secure

Sockets Layer (SSL) and the Transport Layer Security (TLS)

as an encryption layer, the CoAP is also protected by Datagram

Transport Layer Security (DTLS). The RFC 6347 describes the

design of TLS over datagram transport. It is being preferred for

implementation in CoAP and it differs from TLS by the

following parameters:-

• Encryption state is not created, due to the modification

in the records

• The messages are being transmitted in fragments

• Data alterations can be endured, which employs a thresh-

old mechanism to withstand the extent of errors

• Addition of sequence numbers

• Mapping of DTLS records with a datagram

I. Security in CoAP

Although security mechanisms have been instigated in

CoAP, it does suffer from common attacks including:-

• Parsing attacks, in which a remote node could be crashed

by executing an arbitrary code on the node

• Caching attacks, wherein a proxy having the ability to

cache can gain control. This may serve as a threat for

clients who are exchanging data with the proxy,

unknowing a possible intruder in the network

• The amplification attacks, in which an attacker can use the

end devices to convert a small packet into a larger packet.

A CoAP Server can in fact reduce the amplification at-

tacks by using Blocking/Slicing modes. But amplification

attacks are still on the rise, and according to [5], it has been

estimated that the amplification factor of CoAP can go up

to 32, which means that an attacker who has access to a 1

Mbps Network connectivity can target another link which

is equipped with a capacity of 32 Mbps

• Spoofing attacks

• Cross-Protocol attacks, where the translation from TCP to

UDP is liable to attacks [11]

J. CoAP Implementations

There are various methods of executions of CoAP, based on

the project requirements. The most popular implementations

are depicted in table 2:-

TABLE II

COAP TOOLS

Constrained Devices Erbium, libcoap, tinyDTLS, wakaama, SMCP

Server Side Californium, CoAPSharp, Erlang, aiocoap, etc

Browser Based Copper

Android Aneska

III. RELATED WORKS

• Paper [1] discusses the various ongoing security issues

with distinct reference to CoAP. An outline of certain IoT

protocols like the 802.15.4, 6LoWPAN and RPL were

discussed along with their security issues. However, the

paper highlighted some of the key security solutions that

CoAP currently uses, including the heavyweight DTLS

Protocol and the exploitation of 6LoWPAN in header

compression.

• The work in [2] forms the basis for establishing a CoAP

environment. The paper mainly focuses on analyzing the

security of IoT systems in the healthcare applications,

whose sole purpose is to derive the status of patient‘s

health condition through a web browser. For the purpose,

a CoAP Architecture was setup using the Cooja simulator

to simulate the client-server communication, which

produces a resource containing information about the

patient‘s health status. Here, the Copper browser which is

an add-on service provided by Firefox for RESTful

services, was used.

• The work of an intermediate entity called proxy was dis-

cussed in [3], highlighting the importance of caching and

translation of communication between differentprotocols.

The paper also discusses the enactment of proxies as an

independent entity, its mapping from HTTP to CoAP and

vice-versa and the use of certain CoAP libraries like

Californium.

IV. SECURITY TESTING AND RESULTS

A. Initial Setup

We used the DHT11 Sensor and the ESP8266 to sense the

temperature in the surroundings and generate a series of outputs

on the Arduino serial monitor. The DHT11 sensor is chosen to

produce digital output. It can be integrated with any

microcontroller like Arduino, Raspberry Pi, etc. Keeping in

mind the cost implications, the DHT11 sensor provides the

much needed reliability and stability. On the other hand, the

NodeMCU (ESP8266) is a low-cost Wi-Fi chip that supports

serial communication protocols like Universal Asynchronous

Receiver/Transmitter (UART), Inter-Integrated Circuit (I2C),

2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)

657

etc. The ESP8266 was connected to a guest Wi-Fi, to which

the Client was also connected.

Fig. 3. Initial setup of a CoAP Architecture

The CoAP Code is executed in the Arduino console. The port

is set to COM3. The initial temperature and humidity values are

displayed with a Baud rate set to 115200.

B. Copper framework Output

Copper was designed as a browser add-on for the Internet of

Things. The concept of Browser for the Internet of Things

(BIT) has been very helpful in providing a platform for

communicating with the constrained devices. In this work, the

Firefox version is downgraded to version 50 and the Copper

add-on is downloaded from Firefox. The Copper browser is

started by typing ‘coap:// ’and in the address bar, an IP address

of the server is generated. When the Resource Discovery option

is clicked, we get an output as shown in Fig. 4.

Fig. 4. Copper Browser Output showing Resource Discovery

From the above result, it could be observed that the re- source

is discovered as “TEMPERATURE AND HUMIDITY”,

whose values are received from the Arduino console. The

Copper browser is also equipped with an option to change the

request commands to the server. When the request for change

is posted in Copper, a response code “2.04 Changed” is

received with a Round Trip Time (RTT) of 12ms.

C. Contiki

When designing an Operating System (OS) for the Internet

of Things, the most important aspects that should be

concentrated are the memory size, power of the constrained

devices and their processing capabilities. Contiki is one such

operating system which is specifically designed for resource

constrained devices such as the sensor nodes. It is built with an

event-driven kernel that supports pre-emptive multithreading.

This multithreading approach is useful when the execution of

thread has to be interrupted by another thread, in event driven

situations like handling network packets or disk drives, etc.

D. Cooja simulator

Fig. 5. Cooja Simulator compiling the Server Code

Fig. 6. Cooja Simulator compiling the Border Router

Cooja is a network simulator, used in Contiki for simulation

purposes. Cooja has been developed in JAVA and its goal is

to provide extendibility by using interfaces and plugins. An

interface represents a sensor node and the plugin is used to

cooperate with the simulation. Java Native Interface (JNI) is

used to link the simulator with Contiki thereby allowing

applications to run in Contiki. This approach has laid the

foundations for applications to run on a real sensor node intact.

For this research work, the simulation results are obtained

by starting the Contiki OS and the Cooja Simulator. The

CoAP setup mote is connected and the server code is run on

2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)

658

Fig. 7. Burp Suite output showing the interception of communication

one terminal. On another terminal, the Border Router code

is compiled using the Routing Protocol for low power and lossy

networks (RPL). These RPL border routers are required to be

connected from one network to another and they are typically

used in Wireless Sensor Networks (WSN). Now both the codes

are compiled on their respective terminals and outputs obtained

are shown in Fig. 5 and Fig. 6.

An IPv6 Addresses is received from the border router

terminal, which when pinged in the Copper browser displays a

list of resources the server offers. In our case, the copper web

page with the “TEMPERATURE AND HUMIDITY” resource

gets displayed.

E. The Attack

The attack was launched by setting up a proxy server. The

proxy basically acts as an intermediary between the client and

server and it allows clients to make subsidiary connections to

the outside network services. The Eclipse Californium is one

such example of a java-based proxy implementation, whose

central focus is to achieve scalability and usability, apart from

resource-efficiency [15].

The Californium proxy was imported in to the Eclipse IDE,

which provides APIs for initiating RESTful web services. The

CoAP client is run on Mozilla Firefox with support from

Copper and Californium. Subsequent to requesting the

resources, the client gets access to the “TEMPERATURE AND

HUMIDITY” resource from the server.

To test the security of the protocol, the community edition of

Burp Suite is installed. This tool helps in performing active web

penetration testing. The communication between the client

running the proxy and the server is intercepted with the help of

this tool. The Burp Suite is configured to localhost and the

connection is captured as shown in Fig. 7.

The result shows that the information is transmitted in plain

text format, indicating the likelihood of attacks on the protocol.

V. CONCLUSIONS FOR FUTURE APPROACH

The Internet of Things is considered as one of the biggest

jumps towards a technically strong future. It is imperative to

have a secure IoT system to develop and adopt this technology

in our daily life. In this work, one of the security issues

pinpointed in the protocol - sniffing attack - is performed on a

test network with a CoAP client-server and a proxy model. By

this attack, we are able to gain Intel on the type of information

being shared between the client and server. The future work

will focus on integrating Object Security for Constrained

RESTful Environments (OSCORE) with CoAP, which will

further enhance the end-to-end security in CoAP. In addition to

OSCORE, the work will also add a layer of access control

mechanism to prevent the possible intervention of malicious

third party in the network. While threats to IoT are on the rise,

an efficient security testing has become a paramount

importance particularly in CoAP requiring a deep and wide

research.

REFERENCES

[1] R. A. Rahman, B. Shah, ”Security analysis of IoT

protocols: A focus in CoAP”, 2016 3rd MEC International

Conference on Big Data and Smart City (ICBDSC), pp. 1-

7, 2016.

[2] Kanchana P. Naik, U. Rakesh Joshi, ”Performance

analysis of constrained application protocol using Cooja

simulator in Contiki OS”, 2017 International Conference

on Intelligent Computing, Instrumentation and Control

Technologies (ICICICT), pp. 547 - 550, 2017.

[3] J. Esquiagola, L. Costa, P. Calcina, M. Zuffo, ”Enabling

CoAP into the swarm: A transparent interception CoAP-

HTTP proxy for the Internet of Things”, 2017 Global

Internet of Things Summit (GIoTS), pp. 1 - 6, 2017.

[4] Praveen Vijai, Bagavathi Sivakumar, ”Design of IoT

Systems and Analytics in the context of Smart City

initiatives in India”, 2nd International Conference on

2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)

659

Intelligent Computing, Communication and Convergence

(ICCC-2016), Procedia Computer Science 92 (2016), pp.

583 588.

[5] Federico Maggi, Rainer Vosseler,Davide Quarta, In the

document ”The Fragility of Industrial IoTs Data Back-

bone Security and Privacy Issues in MQTT and CoAP

Protocols”, Trend Micro-Research, 28 July 2018

[6] S Krco, B. Pokric, F. Carrez, ”Designing IoT

architecture(s): A European perspective”, Proc. IEEE

WF-IoT, pp. 79-84, 2014.

[7] Satyadevan S., Kalarickal B.S., Jinesh M.K. (2015)

Security, Trust and Implementation Limitations of

Prominent IoT Platforms. In: Satapathy S., Biswal B.,

Udgata S., Mandal J. (eds) Proceedings of the 3rd

International Conference on Frontiers of Intelligent

Computing: Theory and Applications (FICTA) 2014.

Advances in Intelligent Systems and Computing, vol

328. Springer, Cham.

[8] L. Atzori, A. Iera, G. Morabito, ”The Internet of

Things: A survey”, Computer. Networks, vol. 54, no. 15,

pp. 2787- 2805, Oct. 2010.

[9] Jelena Mii, M. Zulfiker Ali, Vojislav B. Mii,

“Architecture for IoT Domain with CoAP Observe

Feature”, IEEE Internet of Things Journal, Volume: 5,

Issue: 2, pp. 1196 - 1205, 2018.

[10] Shambhavi Mishra, Pawan Singh, Deepak Arora,

Krishna Kant Agrawal, ”Analyzing and evaluating the

performance of 6L0WPAN and RPL using CONTIKI”,

Intelligent Sustainable Systems (ICISS) 2017

International Conference on, pp. 1100-1105, 2017.

[11] Z.Shelby, K.Hartke, C. Bormann ,June 2014. The Con-

strained Application Protocol (CoAP). Available from:

https://tools.ietf.org/html/rfc7252.

[12] A. Rahman, Ed-Inter Digital Communications, LLC;

E. Dijk, Ed-Philips Research Group October 2014.

Communication for the Constrained Application

Protocol (CoAP). Available from:

//tools.ietf.org/html/rfc7390.

[13] A. Ludovici, A. Calveras, A. Calveras, ”A proxy design

to leverage the interconnection of CoAP wireless sensor

networks with web applications”, Sensors (Switzerland),

vol. 15, no. 1, pp. 1217-1244, 2015.

[14] Shahid Raza, Hossein Shafagh, Kasun Hewage, Ren

Hummen, and Thiemo Voigt, ”.Lithe: Lightweight Secure

CoAP for the Internet of Things”, IEEE sensors journal,

vol. 13, No.10. October 2013.

[15] Best practices for http-coap mapping implementation,

https://tools.ietf.org/id/draft-ietf-core-http-mapping-

01.html, last accessed: January 2016.

2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)

660

