
24 May/June 2015 Copublished by the IEEE Computer and Reliability Societies 1540-7993/15/$31.00 © 2015 IEEE

SECURITY ON TAP

Despite being carefully designed, cryptographic protocol standards often turn out to be fl awed.
Integrating unambiguous security properties, clear threat models, and formal methods into the
standardization process can improve protocol security.

S ecurity protocols are distributed algorithms that use
cryptography to achieve security objectives. In prac-

tice, these protocols regulate how computing devices
carry out security-critical tasks. For example, Transport
Layer Security (TLS) is used to establish secure commu-
nication channels between clients and servers, Kerberos
is used for distributed authentication and authorization,
and IPsec can be used to set up virtual private networks.
� ese protocols are omnipresent and let us access and
protect numerous applications, ranging from banking to
social media. Many lesser-known protocols are also in
use, such as WiMAX for secure communication in wire-
less networks, ISO/IEC 9798 for entity authentication,
and the Extensible Authentication Protocol (EAP) for
network access authentication.

A protocol such as TLS lets any client potentially
communicate with any server, independent of the
operating system they run on or the programming lan-
guage used for their implementation. � is generality
is enabled by standards and technical documents such
as RFCs, which describe a protocol’s operation in suf-
� cient detail to guide the construction of interoperable
implementations. All the protocols we have mentioned
are described by standards or RFCs approved by stan-
dardization bodies, or are undergoing standardization.

A closer look at modern protocol standards indi-
cates that although standardization bodies are doing
excellent work, the resulting protocols’ security varies
considerably. Over the past decade, we have conducted

numerous case studies with model-checking tools for
security protocols, some of which we have developed
ourselves.1–4 Our analysis shows that many standards
su� er from security weaknesses, including basic mis-
takes and well-known � aws. In some cases, these weak-
nesses have been quite serious. Even minor problems,
however, are best avoided from the start, prior to stan-
dardization. Amending standards is time- consuming,
and a� er amendment, companies with products imple-
menting the standard must decide between costly
upgrades or the risk of damaging their reputation and
undergoing litigation for distributing products with
known defects.

Because experts design standards carefully, we might
expect them to meet strong, well-understood, and well-
speci� ed security guarantees. Unfortunately, standards
do not always meet this expectation. Although they
o� en contain detailed functional descriptions, many
do not include much information about security guar-
antees. Instead of unambiguous security properties and
clear threat models, many cryptographic protocol stan-
dards specify, at best, high-level security properties and
a handful of threat scenarios. � is lack of clear threat
models and speci� ed properties makes it impossible
to objectively assess a protocol’s merits: without them,
there is nothing to objectively verify or falsify.

During the past few decades, researchers have suc-
cessfully used formal methods to analyze small aca-
demic protocols with well-de� ned threat models (also

Improving the Security of Cryptographic
Protocol Standards
David Basin | ETH Zurich
Cas Cremers | University of Oxford
Kunihiko Miyazaki | Hitachi
Saša Radomirović | ETH Zurich
Dai Watanabe | Hitachi

www.computer.org/security� 25

called adversary models) and clear security goals. More
recently, researchers from the formal methods com-
munity have analyzed several protocol standards. This
process has typically involved proposing threat models
and security properties as well as analyzing the standard
with respect to properties not explicitly stated in the
standard and therefore conjectured by the researchers.

Here, we illustrate the problems that arise when
security properties and threat models are neglected in
standards and present several case studies to demon-
strate how formal methods can make a difference. We
then examine how we might better integrate formal
methods and associated tools into the standardization
process given present obstacles and limitations. We base
our case studies on three protocols: WiMAX, EAP, and
ISO/IEC 9798.

WiMAX
Our first case study is the wireless communication
standard IEEE 802.16, also known as WiMAX, which
aims to enable the delivery of last-mile wireless broad-
band access (www.ieee802.org/16/published.html).
The WiMAX standard includes several mechanisms
that deal with keys or involve cryptographic opera-
tions. The core mechanism is the authorization phase,
which establishes a shared secret on which all sub-
sequent security is based. This authorization can be
performed using EAP protocols or, alternatively, the
privacy key management (PKM) protocols the stan-
dard describes.

IEEE originally proposed the WiMAX standard in
2001 and has updated it several times since then. The
first version includes only the PKMv1-RSA protocol.
This protocol is executed between a subscriber station
(SS)—typically an end user’s WiMAX modem—and
a service provider’s base station (BS). At a high level,
the protocol proceeds as follows. The subscriber station
initiates communication with the base station by send-
ing its certificate, the list of algorithms that it supports,
and a unique connection identifier (CID). The base
station generates an authorization key, AK, and sends
this back encrypted with the subscriber station’s public
key. It also sends the key’s sequence number and life-
time as well as a security association identifier, which
we denote by SAID in the following message exchanges
for PKMv1-RSA:

SS → BS: SS_Certificate, SS_Algo_Suites, CID
BS → SS: EncPK(SS)(AK), SAID.

After the standard’s initial release, David Johnston
and Jesse Walker identified several weaknesses in 2004.5
In particular, they argued that PKMv1-RSA essentially
provides no security guarantees because, in the context

of wireless transmissions, we should assume that attack-
ers can spoof arbitrary messages (that is, send messages
impersonating another party). The subscriber station
thus has no idea who encrypted or even generated the
key it receives.

Johnston and Walker argued that the protocol
should at least provide mutual authentication under the
(realistic) assumption that attackers can eavesdrop and
inject wireless network traffic. Their arguments were
necessarily informal, given that the standard specifies
neither a threat model nor any details about the secu-
rity properties it aims to achieve. Furthermore, whereas
Johnston and Walker were specific about PKMv1-RSA’s
weaknesses, “mutual authentication” is not a uniquely
defined concept; authentication has many possible
variations that differ in strength, as “The Ambiguity of
Authentication” sidebar illustrates.

In 2005, IEEE released a new version of the standard
that introduced the PKMv2-RSA protocol. This new
version is a three-message protocol in which all mes-
sages are digitally signed. The subscriber station initi-
ates communication with the base station by sending
a random number (SS_Random), its certificate, and a
unique connection identifier. The message is signed with
the subscriber station’s private RSA key (SigSS). The
base station generates a key (pre-PAK), concatenates it
with the subscriber station’s MAC address (SS_MAC),
and encrypts the result with the subscriber station’s
public key. It sends this encrypted message back to the
subscriber station together with the subscriber station’s
random number, its own random number, and its cer-
tificate. The message is signed with the base station’s pri-
vate key (SigBS). In the third message, the subscriber
station confirms the receipt of the previous message
by sending back the base station’s random number and
signing the message (SigSS′). We can see this in the fol-
lowing message exchanges for PKMv2-RSA:

SS → BS: SS_Random, SS_Certificate, CID, SigSS
BS → SS: SS_Random, EncPK(SS) (pre-PAK||SS_MAC),
	 BS_Random, SAID, BS_Certificate, SigBS
SS → BS: BS_Random, SigSS′.

It appears that this new protocol aimed to address
the weaknesses in PKMv1-RSA. But again, the standard
specified neither a threat model nor security properties.
Consequently, even though the numbering might sug-
gest that PKMv2-RSA provides properties in addition
to those PKMv1-RSA provides, the standard offers no
concrete statements to this effect.

Both academic and industrial experts were involved
in a manual security review of drafts of the 2005 version
of the standard.6 These reviews led to changes that found
their way into the revised standard. However, soon after

26	 IEEE Security & Privacy� May/June 2015

SECURITY ON TAP

the new version’s release, researchers pointed out that
an “interleaving attack” was possible on the PKMv2-
RSA protocol.7 This is a commonplace man-in-the-
middle (MITM) attack in which the attacker forwards
and selectively modifies messages between two parties.
In 2008, Suzana Andova and her colleagues used the
formal protocol analysis tool Scyther to analyze several
subprotocols from the standard.8 (The protocol models
used in the analysis are available at https://github.com
/cascremers/scyther/tree/master/gui/Protocols
/IEEE-WIMAX.) We independently rediscovered the
MITM attack, proposed a fix, and verified its correctness.

Figure 1 shows the attack, which proceeds as fol-
lows. The adversary controls a rogue base station,
which we will call Charlie. When a subscriber Bob
tries to establish a connection with Charlie, the adver-
sary reroutes the message to the legitimate base station
Alice instead. Alice replies with a cryptographically
signed message, thinking that Bob is trying to start a
session with her. Her message contains an encrypted
key for Bob. The adversary re-signs Alice’s reply with
Charlie’s private key and sends it on to Bob. Bob
responds as expected, and the adversary reroutes the
message again to Alice. In the end, Alice correctly
thinks that she is communicating with Bob, but Bob
thinks he is talking to Charlie. Thus, authentication of
the session’s participants fails.

The cause of this problem is that the first and third
messages do not include any information on the

subscriber’s assumptions about who the base station is.
Adding the base station’s identity to the third message
prevents the attack.8

Interestingly, despite this attack, the adversary can
neither eavesdrop on Bob’s subsequent messages nor
send messages impersonating Bob. The reason is two-
fold. First, the adversary cannot decrypt the key Alice
sends to Bob. Second, the protocol immediately follow-
ing PKMv2-RSA cryptographically binds the commu-
nication partners’ identities to all exchanged messages.
Thus, the adversary cannot continue the attack. So, is
this “attack” really a security threat?

The surprisingly simple answer is that, because
the standard specifies neither the intended security
properties nor the threat model, we cannot know
for sure. If we play it safe and assume that PKMv2-
RSA does not provide strong security guarantees,
then the cryptographic operations performed in it
and the subsequent protocol are simply redundant
overhead. In fact, we can discard PKMv2-RSA’s third
message without sacrificing the security properties
that it achieves in composition with the subsequent
protocol.8 We could thus simplify the protocol and
reduce its communication complexity. Alternatively,
we can accept that PKMv2-RSA is intended to be a
three-message authentication protocol and ignore
the MITM problem. However, this could lead to real
problems if PKMv2-RSA is combined with a differ-
ent subsequent protocol whose engineers rely on the

The Ambiguity of Authentication

A uthentication is a common security goal. However, the no-
tion of authentication has numerous, substantially differ-

ent interpretations, each with several variants. Table A presents
three typical interpretations of “a client C authenticated by a
server S,” each with a weaker and a stronger variant.

Each of these interpretations has many more variants. The
critical observation is that no one “right” definition of authenti-
cation exists: you cannot specify an appropriate authentication
property without a fundamental understanding of the applica-
tion scenario.

Table A. Typical interpretations of “a client C authenticated by a server S.”

Variant Entity authentication Data agreement Authenticated session key

Weaker Aliveness of C: C has
performed an action.

Noninjective agreement on message m: S
has received the message m from C. C has
sent m to S.

Authenticated session key k: session
key k is a fresh session key, known
only to C and S and possibly a trusted
third party.

Stronger Recent aliveness of C: C has
performed an action (causally)
after a specific action of S.

Agreement on message m: noninjective
agreement on m, and S will not accept m if
it is replayed by the adversary.

Authenticated session key k with
compromise resilience: k is an
authenticated session key, and
compromise of an old session key
does not lead to compromise of k.

www.computer.org/security� 27

statement in IEEE 802.15e that PKMv2-RSA achieves
mutual authentication.

Unfortunately, this failure to specify the threat
model and security properties is not an isolated case.

Extensible Authentication Protocol
Our second case study is EAP, developed by the Inter-
net Engineering Task Force (IETF). Unlike many other
standardization bodies, the IETF uses a completely
public process for developing standards. There is no for-
mal membership; the standardization process is open
to all parties; and its publications, including the RFCs
and Internet drafts we refer to next, are freely available
online (www.ietf.org). This lets us study the evolution
of EAP, which is currently an IETF proposed standard
(http://tools.ietf.org/html/rfc3748).

EAP is a framework for network access authenti-
cation. It supports multiple authentication protocols,
known as methods. Some of the better-known EAP
authentication methods are EAP-TLS, EAP-SIM (Sub-
scriber Identity Module), and EAP-AKA (Authenti-
cation and Key Agreement), used for authentication
and session key distribution in Wi-Fi Protected Access
(WPA/WPA2), the Global System for Mobile Commu-
nication (GSM), and the Universal Mobile Telecom-
munications System (UMTS) networks, respectively.

EAP began in 1995 as an Internet draft for the Point-
to-Point Protocol (PPP) Extensible Authentication
Protocol. PPP was first published as RFC 1134 in 1989.
In April 2004, an Internet draft document was published
reviewing 48 EAP authentication methods (http://
tools.ietf.org/html/draft-bersani-eap-synthesis

-sharedkeymethods-00). It concluded that some meth-
ods were no longer under active development, and
many did not comply with the then-evolving EAP
reference document, which became RFC 3748. Of
the remaining methods, the Internet draft identified
several interesting candidates but left their compari-
son for future work. A comparison at the time would
have been difficult because an EAP threat model and
specific security claims were only introduced in RFC
3748. In fact, even with RFC 3748’s threat model and
security claims, we still consider it a challenge to com-
pare EAP authentication methods because the threat
model is too vague.

This threat model is defined by the assumption that
an attacker could compromise links over which EAP
packets are transmitted, and by a list of 10 attacks. This
is, of course, a source of ambiguity: any attack that is
not explicitly mentioned could be considered out of
the threat model’s scope. Examining the 10 attacks
more closely, we see that they mix generic attacker
capabilities with specific scenarios. For instance, the
first states that the attacker can eavesdrop on the com-
munication link, but narrows this ability down to dis-
covering user identities. The second affords the attacker
two generic capabilities—namely, spoofing and packet
modification—but is restricted to EAP packets.

One way to obtain a more precise threat model is to
focus on what we consider the essential attacker capa-
bilities. From the first two items on the list, we infer
that an attacker can eavesdrop on, spoof, and modify
EAP packets. Several of the subsequent items consider
specific attack scenarios that could result from these

Figure 1. Man-in-the-middle attack on PKMv2-RSA. Subscriber station (SS) Bob is talking to attacker Charlie. Base station (BS) Alice thinks Bob
is talking to her.

�read 1

Role SS
Executed by Bob
Talking to Charlie

�read 2 �read 3

Attacker
Charlie

Rogue BS

Role BS
Executed by Alice

Responding to Bob

Bob_Random, Bob_Certificate, CID, SigBob
Bob_Random, Bob_Certificate, CID, SigBob

Alice_Random, SAID, Alice _Certificate, SigAlice

Alice_Random, SAID, Charlie_Certificate, SigCharlie

Alice_Random, SigBob'

Bob_Random, EncPK(Bob) (pre-PAK||Bob_MAC),

Bob_Random, EncPK(Bob) (pre-PAK||Bob_MAC),

Alice_Random, SigBob'

28	 IEEE Security & Privacy� May/June 2015

SECURITY ON TAP

three capabilities. One concerns denial-of-service
attacks by spoofing messages, and three others con-
cern specific MITM attacks. The last item considers
a particular scenario in which an attacker might spoof
lower-layer protocol messages. The attacker’s capabil-
ity in this case is not defined by the particular scenario,
but by the fact that lower-layer messages are also con-
sidered to be under the attacker’s control. Thus, we can
infer that an attacker is assumed to be able to eaves-
drop on, spoof, and modify EAP and all lower-layer
packets. The remaining items state that an attacker
can perform offline computations, such as diction-
ary attacks on passwords and attacks on weak crypto-
graphic schemes.

We now turn to EAP’s security properties. An EAP
authentication method specification must state which
security properties it claims to satisfy by referring to a
nonexhaustive list given in section 7.2.1 of RFC 3748.
RFC 3748 recommends that the claims be supported
with evidence in the form of a proof or reference.

We examine a selection of properties relevant for
making precise statements about a protocol’s behavior.
The property descriptions are lightly edited quotes from
section 7.2.1:

■■ Integrity protection refers to data origin authentication
and protection against unauthorized modification of
information for EAP packets (including EAP requests
and responses). When making this claim, a method
specification must describe the EAP packets and their
protected fields.

■■ Replay protection refers to protection against the
replay of an EAP method or its messages, including
status messages.

■■ Session independence demonstrates that passive attacks
(such as capturing the EAP conversation) or active
attacks (including compromising the master session
keys) do not enable the compromise of subsequent or
prior keys.

Even though the standard gives no clear threat
model, these descriptions match well with established
concepts from the verification community. Integrity
protection is related to data agreement, replay protec-
tion to injectivity, and session independence to back-
ward and forward secrecy.

Surprisingly, the confidentiality claim is based on
a definition that unnecessarily complicates protocol
analysis and comparison (see RFC 3748, section 7.3):

■■ Confidentiality refers to the encryption of EAP mes-
sages, including status indications and EAP requests
and responses. A method making this claim must sup-
port identity protection.

There are two problems with this property. First,
in an adversarially controlled network, encryption is
necessary to ensure message confidentiality, but it is
not sufficient in general. Danny Dolev and Andrew
Yao constructed an artificial but striking example.9 It
demonstrates how a secure communication protocol,
employing public-key cryptography, can be turned into
an insecure protocol simply by encrypting every proto-
col message an additional time.

Second, to satisfy this property, an authentication
method must provide not only message confidential-
ity but also “identity protection,” a privacy feature that
is an arguably unrelated property. The consequence
of having these two distinct properties combined into
one is that authentication methods that provide mes-
sage confidentiality but not identity protection, such
as EAP-PSK (Pre-Shared Key; RFC 4764), cannot be
easily distinguished from authentication methods that
provide neither of the two properties, such as EAP-
MD5-Challenge (RFC 2284).

RFC 3748 has been updated with RFC 5247, in
which the threat model is clearer, but the newer ver-
sion does not update the security claims. Still, there is
clear movement toward a more precise security model.
Moreover, RFC 4962, an IETF best current practices
document published in 2007, advocates using formal
methods in addition to expert review in the standard-
ization process of key management protocols. In the
next section, we illustrate the feasibility and benefits of
employing formal verification methods in the context of
a cryptographic protocol standard.

ISO/IEC 9798
The International Organization for Standardization
(ISO) and the International Electrotechnical Commis-
sion (IEC) jointly develop IT standards. In 1991, they
published the first part of our final case study, ISO/
IEC 9798, which specifies a family of entity authenti-
cation protocols. This standard is mandated by numer-
ous other standards that require entity authentication
as a building block. Examples include the Guidelines
on Algorithms Usage and Key Management by the Euro-
pean Committee for Banking Standards and the ITU-T
multimedia standard H.235.

Since 1991, ISO/IEC has revised parts of the stan-
dard several times to address weaknesses and ambi-
guities. We might thus expect that such a mature and
pervasive standard is “bulletproof ” and that the pro-
tocols satisfy strong, practically relevant authentica-
tion properties.

However, it is not entirely clear which security proper-
ties the standard’s protocols provide. The standard claims
to provide “entity authentication,” alternatively phrased as
“authentication of the claimant identity.” As the sidebar

www.computer.org/security� 29

explains, we can interpret the notion of authentication
in different ways, making it extremely difficult for users
to judge if a particular protocol provides a sufficient form
of authentication. Similarly, as is common in many stan-
dards, the threat model is defined only in terms of specific
(informal) attack types, such as “replay attack.”

We became involved in evaluating ISO/IEC 9798 in
2010 with the Cryptography Research and Evaluation
Committee set up by the Japanese government. We for-
mally analyzed the 2010 versions of the protocols speci-
fied, parts 1–4 of ISO/IEC 9798, using the Scyther tool.2
For the threat model, we used the established Dolev-Yao
model, in which the attacker has full control over the
network but cannot break the cryptographic primitives.
We evaluated the protocols with respect to a subset of
previously defined authentication properties.10

To our surprise, we found that the standard still
contained several weaknesses that had been previously
reported in academic literature. Moreover, we found new
weaknesses. We provide one illustrative attack, called a
role-mixup attack, in which an agent’s assumptions on
another agent’s role are wrong. The two data agreement
properties (see the sidebar) require that when Alice fin-
ishes her role with (apparently) Bob, Alice and Bob not
only agree on the exchanged data, but Alice can also be
sure that Bob was performing the intended role. Role-
mixup attacks violate agreement properties.

Figure 2 shows an example of a role-mixup attack on
the following 2009 version of the two-pass mutual authen-
tication protocol using a cryptographic check function:

A → B: TNA||Text2||fKAB
(TNA||IB||Text1)

B → A: TNB||Text4||fKAB
(TNB||IA||Text3).

Agents perform actions such as sending and receiving
messages, resulting in message transmissions (horizon-
tal arrows). Actions are executed in threads (vertical

lines). The box at the top of each thread denotes the
parameters involved in the thread’s creation. The
crossed-out hexagon denotes that the claimed security
property is violated.

In this attack, the adversary uses a message from Bob
in role B (thread 2) to trick Alice in role B (thread 3)
into thinking that Bob is executing role A and is trying
to initiate a session with her. However, Bob (thread 2)
is replying to a message from Alice in role A (thread 1)
and is executing role B. The adversary thereby tricks
Alice into thinking that Bob is in a different state than
he actually is.

In addition, when a protocol implementation uses
the optional text fields Text1 and Text3, the role-mixup
attack also violates the agreement property with respect
to these fields: Alice will end the protocol believing
that the optional field data she receives from Bob was
intended as Text1, whereas Bob actually sent this data in
the Text3 field. Depending on how these fields are used,
this could be a serious security problem. For example,
consider a deployment scenario in which the optional
text fields represent numbers. Let the first message be
used for a transaction request, where Text1 represents
the amount of money to be transferred. Assume the
second message is used for confirmation, where Text3
corresponds to the transaction number. In this case,
the adversary can reuse a response message, which con-
tains a transaction number N, to insert a seemingly valid
transaction request for the amount N.

Note that exploiting these attacks, as well as the
other attacks we found, does not require “breaking”
cryptography. Rather, the adversary exploits similarities
among messages as well as agents’ willingness to engage
in the protocol.

We analyzed the shortcomings in the protocols’
design and proposed and formally verified repairs.11 Our
repairs address all the known problems. Based on our

Figure 2. Role-mixup attack. This attack occurs on the 2009 version of the two-pass mutual authentication protocol using a cryptographic
check function. When Alice finishes thread 3, she wrongly assumes that Bob was performing the A role.

�read 1

Role A
Executed by Alice
Initiating with Bob

�read 2 �read 3

Role B
Executed by Bob

Responding to Alice

Role B

Agreement (Alice, Bob, TNB)

Executed by Alice
Responding to Bob

TNA || Text2 || fkAlice, Bob
 (TNA || (IBob)

TNB || Text4 || fkAlice, Bob
 (TNB || (IAlice)

TN 'B || Text4 || fkAlice, Bob
 (TN 'B || (I Bob)

30	 IEEE Security & Privacy� May/June 2015

SECURITY ON TAP

analysis, the ISO/IEC working group responsible for
the ISO/IEC 9798 standard released an updated version
incorporating our proposed protocol fixes in 2012.

We believe that the approach we have taken to ana-
lyze and provably repair the ISO/IEC 9798 standard
can play an important role in future standardization
efforts. Our approach supports standardization com-
mittees with both falsification (finding errors in the
early phases) and verification (providing objective and
verifiable security guarantees during end phases).

Discussion and Recommendations
Our three case studies suggest a trend toward an
improved standardization process. The WiMAX study
provides a cautionary tale on what happens when threat
models and security goals are not included in the stan-
dard. In this case, the lack of these models created a situ-
ation in which some protocols could be declared neither
secure nor insecure, and simple security flaws were not
caught until late in the standardization process, requir-
ing time-consuming, expensive amendments. The EAP
case study indicates that security protocols are increas-
ingly considered in the context of a threat model and are
designed to satisfy specific security claims. However, the
threat models and security claims tend to be specified
informally, making it hard to compare protocol propos-
als and decide whether a protocol is suitable for a given
purpose. The ISO/IEC 9798 case study demonstrates
that a standard can provide systematic threat models and
precise security properties and that we can perform for-
mal verification. It also shows that formal methods are
slowly starting to affect standardization bodies.11–13 We
expect this trend to continue as governments and other
organizations increasingly push for the use of formal
methods in developing and evaluating critical standards.

For example, in 2007, ISO/IEC JTC 1/SC 27
(IT Security Techniques) started the “verification
of cryptographic protocols” project, which involves
developing a standard (ISO/IEC 29128) for cer-
tifying cryptographic protocol designs in which
the highest evaluation levels require using formal,
machine-checked correctness proofs.14 The four cor-
nerstones of the ISO/IEC 29128 certification process
are the requirements that a security protocol docu-
ment must contain a protocol specification, a threat
model or adversary model, security properties, and
self-assessment evidence.15 The specifics for these
requirements depend on what protocol assurance level
(PAL) is sought. At the lowest assurance level, PAL1,
informal descriptions might be given for the protocol
specification, adversary model, and security proper-
ties. The self-assessment can be conducted with infor-
mal arguments (PAL1) or mathematical “paper and
pencil” proofs (PAL2) demonstrating that the security

properties hold with respect to the adversary model.
The higher levels require formal descriptions, specific
to the automated tools employed to obtain the self-
assessment evidence.

Unsurprisingly, we think that security protocol
designs that satisfy these requirements would make for
much-improved security protocol standards. The cur-
rent security protocol standardization process is still far
from ideal, and it will not change overnight. We must
bridge several gaps before formal verification becomes
a standard procedure. Some of these gaps are due to
cultural and technical language differences between
network engineers, cryptographers, and other security
researchers. Others are in our own backyard and con-
cern the automated tools employed in the verification
process. For widespread industrial use, these tools must
be robust, well-documented, and go beyond current
research prototypes. Moreover, the tools themselves
must ultimately be certified to be correct.

M uch work remains before engineers are as com-
fortable specifying security properties and

threat models as they are specifying functional require-
ments. Across domains, both security properties and
threat models tend to be formulated at different abstrac-
tion levels and from different perspectives. Addressing
this requires research leading to a common framework.
Ideally, we need a standardized set of unambiguous
security properties and threat models that other stan-
dards can refer to. Once standards add these to their
functional specifications, we will have the foundation
for evaluating standards’ security merits and, subse-
quently, for comparing different proposals, possibly
using tool support.2,16,17

References
1.	 D. Basin, S. Mödersheim, and L. Viganò, “OFMC: A Sym-

bolic Model Checker for Security Protocols,” Int’l J. Infor-
mation Security, vol. 4, no. 3, 2005, pp. 181–208.

2.	 C. Cremers, “The Scyther Tool: Verification, Falsification,
and Analysis of Security Protocols,” Proc. 20th Int’l Conf.
Computer Aided Verification, LNCS 5123, 2008, pp. 414–
418; www.cs.ox.ac.uk/people/cas.cremers/scyther.

3.	 S. Meier, C. Cremers, and D. Basin, “Efficient Construction
of Machine-Checked Symbolic Protocol Security Proofs,”
J. Computer Security, vol. 21, no. 1, 2013, pp. 41–87.

4.	 B. Schmidt et al., “Automated Analysis of Diffie-Hellman
Protocols and Advanced Security Properties,” Proc. 25th
IEEE Computer Security Foundations Symp. (CSF 12),
2012, pp. 78–94.

5.	 D. Johnston and J. Walker, “Overview of IEEE 802.16
Security,” IEEE Security & Privacy, vol. 2, no. 3, 2004,
pp. 40–48.

www.computer.org/security� 31

6.	 B. Aboba, “Summary of the IEEE 802.16e D8 Security
Review,” Sept. 2005; www.ieee802.org/16/tge/contrib
/C80216e-05_373.pdf.

7.	 S. Xu and C.-T. Huang, “Attacks on PKM Protocols of
IEEE 802.16 and Its Later Versions,” Proc. 3rd Int’l Symp.
Wireless Communication Systems, 2006, pp. 185–189.

8.	 S. Andova et al., “A Framework for Compositional Verifi-
cation of Security Protocols,” Information and Computa-
tion, Feb. 2008, pp. 425–459.

9.	 D. Dolev and A. Yao, “On the Security of Public Key Pro-
tocols,” IEEE Trans. Information Theory, vol. 29, no. 2,
1983, pp. 198–208.

10.	 G. Lowe, “A Hierarchy of Authentication Specifications,”
Proc. 10th IEEE Computer Security Foundations Workshop
(CSFW 97), 1997, pp. 31–44.

11.	 D. Basin, C. Cremers, and S. Meier, “Provably Repairing
the ISO/IEC 9798 Standard for Entity Authentication,”
Proc. 1st Int’l Conf. Principles of Security and Trust (POST
12), LNCS 7215, P. Degano and J.D. Guttman, eds., 2012,
pp. 129–148.

12.	 C. Meadows, “Analysis of the Internet Key Exchange
Protocol Using the NRL Protocol Analyzer,” Proc. IEEE
Symp. Security and Privacy, 1999, pp. 216–231.

13.	 C. Meadows, P.F. Syverson, and I. Cervesato, “Formal
Specification and Analysis of the Group Domain of Inter-
pretation Protocol Using NPATRL and the NRL Proto-
col Analyzer,” J. Computer Security, vol. 12, no. 6, 2004, pp.
893–931.

14.	 S. Matsuo et al., “How to Evaluate the Security of Real-Life
Cryptographic Protocols? The Cases of ISO/IEC 29128
and CRYPTREC,” Proc. 14th Int’l Conf. Financial Cryptog-
raphy and Data Security, LNCS 6054, 2010, pp. 182–194.

15.	 ISO/IEC 29128: Information Technology—Security
Techniques—Verification of Cryptographic Protocols,
Int’l Organization for Standardization, 2011.

16.	 B. Blanchet, “An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules,” Proc. 14th IEEE Computer Secu-
rity Foundations Workshop (CSFW 01), 2001, pp. 82–96.

17.	 S. Meier et al., “The TAMARIN Prover for the Symbolic
Analysis of Security Protocols,” Proc. 25th Int’l Conf. Com-
puter Aided Verification (CAV 13), LNCS 8044, 2013, pp.
696–701.

David Basin is a full professor and the Information Secu-
rity Chair in the Department of Computer Science
at ETH Zurich. His research focuses on information
security, in particular, methods and tools for mod-
eling, building, and validating secure and reliable
systems. Basin received a Habilitation in computer
science from the University of Saarbrücken. Contact
him at basin@inf.ethz.ch.

Cas Cremers is an associate professor in the Department
of Computer Science at the University of Oxford.

His research focuses on information security and
applied cryptography, including the development of
automated analysis tools. Cremers received a PhD
in computer science from Eindhoven University of
Technology. Contact him at cas.cremers@cs.ox.ac.uk.

Kunihiko Miyazaki is a senior researcher in the Research
and Development Group at Hitachi. His research
interests include information security, cryptography,
and formal methods. Miyazaki received a PhD in
information and communication engineering from
the University of Tokyo. He’s a member of the Infor-
mation Processing Society of Japan and the Institute
of Electronics, Information, and Communication
Engineers. Contact him at kunihiko.miyazaki.zt@
hitachi.com.

Saša Radomirović is a senior scientist in the Department
of Computer Science at ETH Zurich. His research
focuses on information security, in particular, mod-
eling, analysis, and verification of security and pri-
vacy properties with algebraic and combinatorial
methods. Radomirović received a PhD in mathe-
matics from Rutgers University. Contact him at sasa
.radomirovic@inf.ethz.ch.

Dai Watanabe is a senior researcher in the Research
and Development Group at Hitachi. His interests
include information security, cryptography, and cryp-
tographic protocols. Watanabe received a doctorate
in engineering from the Tokyo University of Science.
He’s a member of the Information Processing Society
of Japan and the Institute of Electronics, Information,
and Communication Engineers. Contact him at dai
.watanabe.td@hitachi.com.

Take the CS Library
wherever you go!

IEEE Computer Society magazines and Transactions are now
available to subscribers in the portable ePub format.

Just download the articles from the IEEE Computer Society Digital
Library, and you can read them on any device that supports ePub. For
more information, including a list of compatible devices, visit

www.computer.org/epub

