
Automatic Reverse Engineering of Unknown Security Protocols from Network 
Traces 

Yudan Fan*, Yuna Zhu, Lin Yuan  
Department of Information Security 

Zhengzhou Information Science and Technology Institute 
Zhengzhou, China 

e-mail: 1151463213@qq.com 
 
 

Abstract—Previous network-based protocol reverse 
engineering methods have only considered plaintext format of 
payload, and have not been suitable for security protocols 
which include many ciphertext data. We propose a novel 
approach to reverse security protocols from network traces–
named SPREA (security protocols reverse engineering 
approach). SPREA extracts protocol keywords sequences 
hierarchically using sequential pattern mining for the first 
time, which would provide a new idea for plaintext format 
parsing. On this basis, SPREA utilizes the randomness feature 
of ciphertext data to locate ciphertext fields based on entropy 
estimation. Then SPREA infers the state machine using 
sequential pattern mining and Prospex method. Finally we 
evaluate SPREA on four classical security protocols. The 
experimental results show that without using dynamic binary 
analysis, SPREA can parse true protocol format and infer state 
machine purely from network traces with high accuracy. 

Keywords-key managment; key aggragate; cloud storage; 
CPA security 

I.   INTRODUCTION 
With the extensive use of cryptographic techniques, 

security protocols are widely used in many key network 
applications. Meanwhile, new attacks against security 
protocols are continuously increasing. The formal analysis 
approaches of security protocols are based on specific 
adversarial model to detect potential attacks, and can only 
give security analysis results ideally. When considering the 
dynamic factors during protocol running, the results are 
inaccurate. So the formal analysis can not ensure protocol 
security during actual running under the complicated and 
changing environment. Therefore, it is a key problem to 
analyze protocol security online and dynamically in the field 
of information security. 

It is a prerequisite of dynamic security analysis to 
identify protocol, reconstruct protocol session and obtain the 
current running status of protocol based on detailed protocol 
specification. There are many private protocols with 
non-published specifications at present. Their security can 
not be analyzed using the existing protocol analysis tools, for 
example, Wireshark. Therefore, security protocol reverse 
engineering is important for dynamic security analysis of 
protocol. 

Security protocols include much ciphertext information. 
Attackers can not decrypt cipertexts. They usually replay and 
relay ciphertexts to attack protocols. Therefore, not only 

plaintext formats need to be reversed, but also ciphertext 
features need to be extracted. 

The current protocol reverse engineering methods are 
classified into program-based methods [1-6] and 
network-based methods [7-15]. The former [1-6] analyze a 
protocol using a program that implements the protocol as 
input sources, and can reverse cryptographic protocols. 
Prospex [3] first constructs an augmented prefix tree 
acceptor (APTA) T to accept all the packet sequences in the 
training set, and then use Exbar algorithm to find the 
minimal DFA that is consistent with T. The obtained 
minimal DFA represents protocol state machine. ReFormat[4] 
is a system that aims at driving encrypted message format. It 
monitors the program’s processing of the encrypt messages, 
locates the buffers that contain the decrypted data, but can 
only handle programs where there exists a single boundary 
between decryption and normal protocol processing. To 
solve the problem, Dispatcher [5-6] extends Reformat to 
identify every instance of encryption, hashing, compression 
and obfuscation, and to identify the buffers holding the 
unencrypted data before encryption, but the universality and 
accuracy of its identity strategies need to be validated further. 
Program-based methods use dynamic data flow analysis to 
understand how a program consumes an input message, but 
the protocol program may not be obtained. They are hard to 
realize and their applications are limited. Network-based 
methods analyze a protocol using network traces which are 
conveniently collected when a protocol parsing program is 
unavailable. Compared with program-based methods, they 
have fewer limitations and would be used wider. The 
Protocol Informatics (PI) project [7] parses protocol message 
formats using multiple string alignment algorithms found in 
the bioinformatics field. Discoverer [8] proposes recursive 
clustering and type-based sequence alignment to infer 
message formats. In [9], the latent relationship among 
n-grams is discovered by grouping protocol messages with 
the same semantics, and then message formats are inferred 
by keyword based clustering and cluster sequence alignment. 
The above methods only extract message formats and fields, 
not considering protocol state machines inference. It is 
necessary for online security analysis of security protocols to 
consider the order of protocol messages and to infer protocol 
state machines. PEXT [10] divides protocol sessions into 
different conversations. Each conversation represents a 
protocol state, and the protocol state machine is inferred 
according to state transform sequences. BFS [11] extracts the 
relevant fields from arbitrary protocols to construct a state 
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model. Wang et al. [12] propose P-PSM to infer a 
probabilistic protocol state machine. Luo et al.[13] parse 
massage formats based on the Apriori algorithm and infer 
protocol state machines. Bossert G et. Al[11-12] initiate the 
open-source project Netzob [14-15]. On the basis of an 
extension Angluin L* Netzob inference Mealy automata of 
protocols using network traces. Network-based methods only 
consider the plaintext information of protocol, and don’t 
apply to security protocols which include many ciphertext 
data. 

In this paper, we propose a new reverse engineering 
method for security protocols, named SPREA. SPREA 
extracts protocol invariable fields, variable fields, ciphertext 
length fields and ciphertext fields, purely from network 
traces, and infers protocol state machines. The main 
contributions of this work are: 1)In the keywords sequences 
extraction phrase, we mine the ordered keywords sequences, 
using sequential pattern mining for the first time, to parse 
protocol invariable invariable fields, variable fields. 2)In the 
ciphertext fields identification phrase, on the basis of the 
extracted keywords sequences, we utilize byte sample 
entropy and entropy estimation to locate ciphertext field 
according to the randomness feature of ciphertext, providing 
a new idea for ciphertext information utilization. 3)In the 
state machine inference phrase, we obtain the main state 
transition path by sequential pattern mining, and further 
discover protocol state machine based on Prospex[3] to 
character the protocol behaviors.

II.    PROBLEM STATEMENT

Definition 1: Protocol session refers to a complete 
interaction between protocol participants .  

Definition 2: Protocol packet payload sequence refers to 
the order of bytes in packet payload, denoted by 
p=<s1,s2,…si,…,sn>, where si 1≤i≤n belongs to a 

FF}. n=|p|>0. |p| is 
the length of p. The finite sequence set composed of the 
same protocol’s p is referred as protocol sequence set. 

Definition 3: Protocol keywords refer to the protocol 
constants which represent packet type and transmit the 
control information.  

Protocol keywords include protocol name, version, 
control codes and so on. They occur frequently in protocol 
traces. According to the position of keywords, they are 
divided into fixed offset keywords and non-fixed offset 
keywords. There are one or more keywords in protocol 
packets for mostly network protocols [1]. The control 
information and user data are effectively distinguished using 
keywords.  

In view of the fact that data mining is the most effective 
means for data analysis, classical association rule mining 
methods are used for protocol keywords extraction[13][16], but 
they only consider fixed offset keywords, and can not handle 
the non-fixed offset keywords. Sequential pattern mining 
extends association rules mining further to discover frequent 
subsequences as patterns in a sequence database, widely 
used in DNA sequences analysis, Web access pattern 
analysis, etc.  
In this paper, we first extract the ordered keywords 
sequences based on sequential pattern mining. A Keyword 
belongs to an invariable field, while bytes between two 
keywords belong to a variable field. Then we locate 
ciphertext fields in variable fields and infer protocol state 
machines further.

III. SPREA METHODOLOGY

A. SPREA Architecture 

SPREA architecture includes four phrases, as shown in 
Fig. 1. 

Figure 1. SPFPA architecture 

1) Data pre-processing: we run the same protocol 
program in each host of LAN, capture packets by Wireshark,
and filter the specified protocol traffic by filter rules for 
public datasets. Then the pure protocol traffic is clustered 
using statistical features, i.e. packet length, direction and 
offset, to obtain the same type packets, and the protocol 
packet payload sequences in the same cluster are extracted 
further.

2) Keywords sequences extraction: We extract the 
ordered keywords sequences based on sequential pattern 
mining and consequently identify protocol invariable fields 
and variable fields. We mine basic tokens of packet 
payload sequences set in the same cluster—1-position-token 
with fixed-offset and min-length-token with min_len 
adjacent bytes. We build token-tree to store the basic 
token information. We establish token projected database 
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based on token-tree. Then we mine protocol pattern 
hierarchically, and further obtain the ordered keywords 
sequence. 

3) Ciphertext fields identification: On the basis of 
keywords sequences extraction, we parse the variable fields 
between two keywords further. We utilize byte sample 
entropy and entropy estimation to pre-locate ciphertext 
fields according to the randomness feature of ciphertext. 
We search ciphertext length fields heuristically, and further 
locate ciphertext fields.

4) State machine inference: We assign label to each 
packet, construct the main state transition path by sequential 
pattern mining, and further infer protocol state machine 
based on Prospex method [3].

B. Keywords Sequences Extraction 

We analyze the features of sequential pattern mining for 
security protocols, and propose a protocol sequential pattern 
mining method to extract the ordered keywords. 

1) Features of Sequential Pattern Mining for Security 

Protocol: The existing sequential pattern mining methods 
only consider the values of sequence elements, ignoring the 
order of elements. They assume adjacent elements are 
independent of each other. But a protocol sequence pattern 
has its specific requirements:

The frequent patterns with adjacent bytes or fixed 
position are more meaningful than others. 
Protocol keywords are composed of one or more 
bytes. Adjacent frequent patterns have more 
semantic information than others. A fixed-offset 
keywords are closely related to  a position. Using 
sequential pattern mining directly will produce many 
redundant and short patterns, so we should utilize 
the frequent patterns with adjacent byte or fixed 
position to improve the efficiency of protocol 
sequential mining.
We should mine protocol keywords sequences 
hierarchically and sequentially and need not discover 
all the protocol sequential patterns. The byte 
sequence of a protocol payload is ordered and 
continuous. The keywords are also in order. So we 
should extract keywords sequences combing with 
the ordered feature. 

In conclusion, to meet the needs of protocol sequential 
pattern mining, we will design a sequential pattern mining 
method for security protocol to extract protocol keywords. 

2) Basic Token Mining: We mine frequent bytes with 
fixed position for fixed-offset keywords, and frequent 
adjacent byte sequences which are greater than min_len for 
non-fixed offset keywords. 

Definition 4: Support sup: Given protocol sequences set 
P (see definition 2), where p P, if a sequence x is a 
subsequence of p, then s(x)=1, else s(x)=0. The support of x 
in P is defined as sup(x)= ( ) /

p P

s x P , where |p| is the total 

sequence number of P. 

Definition 5: 1-poistion-token: Given a user-specified 
min_sup threshold, if a byte x always appears at the fixed 
position, and sup(x)≥min_sup, then the byte x is referred as 
1-position-token.

Definition 6: min-length-token: Given two 
user-specified thresholds—min_sup and min_len, if x is a 
adjacent byte sequence with min_len length, and 
sup(x)≥min_sup, then sequence x is referred as 
min-length-token.

We encode the raw byte sequence of a packet payload. 
Each byte is encoded as 5 characters. The first three are 
hexadecimal value of the byte offset. The fourth and fifth are 
hexadecimal value of the byte. Then we mine frequent 
1-items in encoded protocol sequences set to find 
1-position-tokens and the corresponding position 
information. 

A byte in a min-length-token may be a 1-positon-token. 
To mine min-length-tokens which are disjoint with 
1-position-token set, we encode the bytes except for 
1-positon-tokens in a raw payload sequence, i.e., the 
sequence between two 1-poistion-tokens X=b1,b2,…,bk (for 
the last 1-position-token, X is the byte sequence after the 
token) is encoded. Each element is bytes with min_len length, 
X’=b1…bmin_len, b2…bmin_len+1,…,bk-min_len+1…bk. Then we 
mine min-length-tokens in the encoded sequence set. 

3) Token-tree Construction: Combining with the 
ordering feature of tokens, we present a new tree structure 
based on FP-tree[17] to store basic tokens information of 
protocol sequences. 

Definition 7: Token-tree: Token-tree is composed of 
root, prefix sub-tree constituted by basic tokens, and basic 
token head table. Each node (except root) is represented 
by (token-name, count, offset, overlap, pnode), where 
token-name is the name of basic token related to the node;
count is the number of sequences which include the token; 
offset is the token’s position, when position is non-fixed, it is 
null; overlap is the number of bytes which overlap its parent 
node; pnode represents the parent node thread. A 
n-length-token with n byte length Tn=b1b2…bn  
(n>min_len) can be represented as connection of t basic 

tokens ( min_ 1
min_

n

t n len

len

). In order to 

include the total basic tokens for token-tree, the value of 
overlap is: 

0                if  a node and its parent node are disjoint and their positons are adjacent
-1  if  a node and its parent node are overlap with -1 bytes and 

                  the
min_len min_len

overlap

ir positons are adjacent
            if  the positions of a node and its parent node are nonadjacentnull

Each tuple of token head table is composed of token 
name and Node-link (a pointer to the first node with the 
same token name in token-tree). Pointers of the same token 
are connected to a link. Considering the ordering of 
protocol byte sequence, each branch’s nodes are ordered in
accordance with that they appear in protocol sequences. In 
the prefix sub-tree of basic tokens, if a sequence’s prefix is 
not the same as any sequence’s of the existing branches in 
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token-tree, we create a new branch from the root node.Tree 
with the above characteristics is referred as token-tree. 

Definition 7: Tokens join: If t1 and t2 are basic tokens,
1 1 2 l
t b b b

l
b

l
, 2 1 2 '' ' '

l
t b b b ''

l
b , and the last m bytes of t1 are 

the same as the first m bytes of t2 (m<l m<l’) , then the 
join of t1 and t2 is 1 2 m 1 '' '

m l
b b b b bm 1 ''

m lm 1m 1b b b'm 1m 1 , denoted t1ǁm t2.
Definition 8: Token sequence: A node of token-tree is 

denoted by nodek =(tk, countk , offsetk, overlapk, pnodek). 
For any two nodes nodei and nodej in a branch of token-tree, 
the path between the two nodes nodei→nodei+1…→nodej
represents token sequence

1 21|| || ||
i i j

i overlap i overlap overlap j
t t t||

j
overlap

||
j

t . 
Token-tree Property 1: The support of any node (except 

root) is not less than the support of its descendant nodes. 
Proof: When multiple sequences include tokens with the 

same prefix, the tokens are stored by the same branch in 
token-tree. Therefore, if a protocol sequence includes a node 
of token-tree, then it must include all ancestor nodes of the 
node, and consequently ancestor nodes’ support is greater 
than the node’s.

Token-tree Property 2: For a branch path from root to a 
token node nodek , the support of the path’s corresponding 
sequence is equal to the support of nodek. 

Proof: Protocol sequences are ordered. The path also 
follows the order of protocol sequences. From property 1 we 
can see that when a branch include nodek, it must include all 
the ancestor nodes of nodek —node1, node2, …nodek-1. 
Therefore, the support of sequence corresponded to 
root→node1→node2… →nodek is equal to the support of 
nodek

4) Protocol Sequential Pattern Mining: Protocol 
packets are parsed hierarchically from left to right. 
Consequently, we generate token projected database based 
on token-tree to mine protocol keywords sequences 
hierarchically. 

PrefixSpan[18] need not generate candidate frequent 
itemsets. Its idea is that the prefix sequence of a frequent 
sequence is also frequent, and a sequence can be obtained by 
extending prefix sub-sequence through limited steps. 
Inspired by PrefixSpan, we construct token projected 
database to mine protocol sequence patterns. 

Definition 10: Token projection and token projected 
database: Given two token sequences x1 and x2, where

1 2 11 1 2|| || ||
n

l l l n
x t t t

1
||

n
l n1

||
n

t||
l n

|| , ' ' '
1 2 1

' ' '
2 1 2|| || ||

m

m
l l l

x t t t
1

'||
m

m
l

||
m

t'||
m

l

||  (m<n l
i
is 

the overlapped bytes between t
i+1

and t
i

'
i

l is the overlapped 

bytes between '
1i

t and '
i

t ), x
2
 is a sub-sequence of x1 (x2≠x1), 

if a token sequence " " "
1 2 1

" " "
3 1 2|| || ||

m

m
l l l

x t t t
1

"||
m

m
l

||
m

t"||
m

l

||  (m<k=n) exists, 
which satisfies 1) x2 is a prefix of x3, 2)x3 is the longest 
sub-sequence of x1 which satisfies 1), then x3 is the 
projection of x1 with regard to x2. In protocol sequence set, 
the set composed of all the x2’s suffix sequences in x3 is 
referred as the projection database of x2. 

The projection of any protocol token node ti is the 
corresponding sequence of the path from ti to leaf nodes. In 

protocol sequence set, the projection database of ti is the set 
composed of sequences corresponded to all sub-tree after ti .  

PrefixSpan projects for all the frequent 1-item iteratively. 
But protocol sequences are in order. In a branch of token-tree, 
the projection of a node includes the projections of its 
descendant nodes. We project hierarchically in accordance 
with the hierarchical order of token-tree, without generating 
projections of all the frequent tokens, as shown in fig. 2. 

Figure 2. Sequential pattern mining 

We discover 1-tokenset Token1—a set composed of 
the first tier token. 

We project with regard to each token in Token1. In 
the projection database of token1 (token1 Token1), 
we search vertically according to the branches of 
token-tree, and compute the support of the second 
tier tokens (the descendant nodes of token1, denoted 
token2). If sup(token2)≥min_sup in the 
projection of token1, we continue to project token2 
iteratively. i.e., in the projection database of token2, 
we search the third tier tokens vertically (the 
descendant nodes of token2, denoted token3). If 
sup(token2) <min_sup in the projection of token1, 
according to property 1 in section 3.2.3, the support 
of token2’s descendant nodes is less than min_sup, 
then we will not project for the branch.
In the projection of tokeni, we compute the support 
of the (i+1)th tokens (the descendant nodes of tokeni, 
denoted tokeni+1 ). We do this iteratively until reach 
leaf nodes of each branch in token-tree, and 
consequently extract keywords sequences of packets 
in the same cluster. 
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We analyze the features of sequential pattern mining for 
security protocols, and propose a protocol sequential pattern 
mining method to extract the ordered keywords. 

C. Ciphertext Field Identification 

1) Ciphertext Field Pre-location: Protocol fields are 
always in bytes[8]. We take payload bytes with the same 
offset as a random variable, and describe byte distribution 
by entropy. Security protocols always use fresh random 
numbers which are not usually contained in other network 
protocols to prevent attacks. We take random number fields 
as generalized ciphertext fields. 

Definition 9: Byte sample entropy: Given a set with the 
same type protocol packets { }

i
packet  (1 i N ), if

j
x

is a byte variable with offset j in packets (the value range of

j
x is 0-255), the byte sample entropy of

j
x is

255

1
( ) log

j k k

k

H x f f , where
k

f is the frequency of
i

x with 

value k in{ }
i

packet . 
A ciphertext byte variable satisfies the uniform 

distribution approximately [19]. If a byte belongs to a 
ciphertext field, it takes random values in network flows. Its 
entropy is maximal because of its uncertainty. The value of a 
plaintext byte variable is in certain extent, because protocol 
specification has specific semantics. If a byte belongs to a 
plaintext field, its entropy is less than the entropy of a 
ciphertext byte. So we present a ciphertext field pre-location 
algorithm based on entropy, as shown in algorithm 1. 

Algorithm 1. Ciphertext field pre-location algorithm
Input: payload byte sequence P of packets with the similar format, protocol keywords

sequences;
Output: ciphertext distribution interval I= {I1, I2,…,I

K
}, the interval number K.

1: For each keyword K
2:   find the next Keyword K’ and obtain the byte sequence between the two keywords;
3:   for each byte variable B

i

4:      E=ByteEntroyCompute(B
i
); 

5:      E’=N-truncated-entroyCompute ();
6:      CompareEntroy(E,E’); // to determine whether the byte belong to ciphertext
7:    End for
8:    Record the ciphertext Byte;
9:    Merger the continuous ciphertext Byte as ciphertext interval ; 
10: End for
11: Return I, K 

Compute byte sample entropy : On the basis of 
keywords extraction, we extract the byte sequence 
between two keywords, take bytes with the same 
offset (we count offset from the position of the front 
keyword) as random variables, and compute byte 

sample entropy
255

1
( ) log

j k k

k

H x f f . 

Entropy estimation: The uniform distribution is the 
maximum entropy distribution among all continuous 
distributions. Its entropy is 

255

1

1 1log log 256 8
256 256

k

ideally. But byte 

sample entropy is related to the selected sample. If 
the sample length N is finite, especially N~256 or 
N<256, there are errors between the value of byte 
sample entropy and 8. Only when N , the value 
of byte sample entropy is 8 approximately [20]. So 
we can note compare the value of byte sample 
entropy with 8 directly. 

To identify ciphertext byte variables, we use entropy 
estimation to compute the entropy of uniform distribution
with N sample numbers ( 16N

[21]), and compare it with 
the value of byte sample entropy. When 0,1, ,255{ }

i i
p p

satisfies the uniform distribution, N-truncated entropy 

0 255
0 255

255

, , 00 255

1( ) log
, ,256

i i

N N

n n i

n n

N n n

H p

n n N N
255n

n 00n 0n

255255n

00255 00 255n255n

[20] is an unbiased estimator, where 
i

n  is frequency of value

i ,
0 255 0 255

!
, , ! !

N N

n n n n255n 255 !255

. Specifically, generate all 

possible sample of length N according to p; estimate the 
entropy based on Maximum Likelihood Estimation (MLE); 

take the average of the MLE estimates as H
N
(p).

Pre-locate distribution interval of ciphertext:
ompute N-truncated entropy H

N
(p) of the uniform 

distribution and its confidence interval 
ˆ( ) 4 ( )MLE

N N
H p SD H  by Monte-Carlo method 
according to [10] (When N>16, the confidence level
is 99.9% approximately[10]), where ˆ( )MLE

N
SD H  is 

standard deviation of ˆ MLE

N
H . Compare byte 

sample entropy with H
N
(p). If a byte entropy lies 

confidence interval, the byte satisfies the uniform 
distribution and is a ciphertext byte. Merger the 
continuous ciphertext bytes as ciphertext interval.
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2) Ciphertext-field Boundary Location: The relative 
position with regard to keywords and the length of a 
ciphertext may be variable. Therefore the pre-located 
ciphertext interval may be not ciphertext field boundary. 

A ciphertext format is as follows. Length field|| 
ciphertext data with variable length. The length of a 
ciphertext is related to cryptographic algorithm, plaintext 
length and key length. It is usually variable. Variable fields 
must use a length field before it, so that the protocol receiver 
can parse it. Ciphertext data with fixed length. In this case, 
there is not a length field before ciphertext possibly.

According to the relative position of a ciphertext and a 
keyword, there are two cases. The relative position of a 
ciphertext is fixed. If the ciphertext length is fixed, the 
pre-located ciphertext interval is the ciphertext field 
boundary, or else, the start position of pre-located ciphertext 
interval is also that of the ciphertext field, but the end 
position of the ciphertext field is uncertain. The relative 
position of a ciphertext is variable. The pre-located 

ciphertext interval is a part of ciphertext field, but the 
boundary of ciphertext field is uncertain.

Therefore, after pre-locating ciphertext interval, we 
search ciphertext length fields heuristically and locate the 
boundary of ciphertext fields further (we mainly consider 
length fields represented by hexadecimal numbers).  

The identify strategies of ciphertext length fields are as 
follows. Ciphertext length fields are usually represented 
by hexadecimal numbers of 1~2B length. The length of a 
protocol ciphertext is limited, usually 128b~4096b, and the 
corresponding decimal number is 16~512. A ciphertext 
length field is related to a ciphertext length. The length 
changes with the ciphertext length. Ciphertext length 
field can not appear after its related ciphertext.

The length of pre-location ciphertext interval I
i
 by section 

3.3.1 is denoted as 1l (in B). The byte sequence between the 
start keyword and I

i
’s start position is denoted as BS. In BS, 

the length between a byte and the next keyword is denoted as 

2l (in B). The ciphertext-field boundary location algorithm is 
shown in algorithm 2. 

Algorithm 2: Ciphertext-field boundary location algorithm
Input: ciphertext field interval I= {I1, I2,…,I

K
}, the interval number K.

Output: ciphertext field C= {C1, C2,…,C
m
}, ciphertext field number m.

1: For each distribution interval I
i

2:   If l1≥16 then 
3:      n=OneByteValue(BS); 
4:      m=TwoByteVaule(BS); 
5:      if l1≤n≤l2 or m≤min(l2, 512)  then
6:           ByteRocord(); // record the byte which is a possible ciphertext length field
7:      End if
8:    End if 
9:    L=CiphertextLength (n,m); // determine ciphertext length field
10:   If  L=Null then
11:       PlaintextLengFieldSearch(BS);
12:       Obtain ciphertext field hierarchically;
13:   End if 
14: End for
15: Return C, m

Searching all the possible ciphertext length fields in 
BS. If 1 16l , there may exist a ciphertext field 
between keywords. We compute the values of each 
byte n and each two continuous bytes m.  if 

1 2l n l or 2min( ,512)m l , we record a
length vector (the start keyword K, the end keyword 
K’, the relative offset O of byte with regard to K,
byte value, the corresponding byte sequence); 
When m=n (for example both “00 C0” and “C0” are 
length fields), the length fields are overlap, and we 
take m as the preferred length field. 

Determining if the recorded n and m are length 
fields further. If the intersection of the length vectors 
(the start keyword K, the end keyword K’, the 
relative offset O of byte) is not null, O is fixed, the 

intersection element is the correct length vector and 
the corresponding byte sequence is the ciphertext 
field; else O is variable, we will search plaintext 
length fields further to identify plaintext fields, and 
parse packets left-to-right hierarchically to locate the 
ciphertext field boundary. 

Obtaining the ciphertext field boundary when there 
is not a ciphertext length field. In this case, the 
length of the ciphertext is fixed. We will search 
plaintext length fields further. If there is not a 
paintext length fields, the paintext length is also 
fixed and the relative offset of the ciphertext is fixed, 
consequently the pre-located ciphertext interval is 
the ciphertext field; else we identify plaintext fields 
using plaintext length fields, and parse packets 
left-to-right to locate the ciphertext field boundary. 
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D. State Machine Inference 

State machine inference algorithm is shown in algorithm 
3.

Algorithm 3. State machine inference algorithm.

Input: clusters of protocol CP, keywords sequence 

set K, ciphertext fields C

Output: protocol state machines.

1: TypeCluster=Clusterhandle(CP, K);

2: LabelAssign(TypeCluster);

3: represent each session as a label sequence, obtain 

label sequences set L

3: PrefixSpan(L)

4: GetLonegestPattern();

5: M=GetMainPath();

6 :T=APTA(L, M)

7: Exbar(T)

8: Return state machines

The goal of state machine inference is to reveal the order 
in which different types of messages should be sent and to 
character the protocol behaviors. This object can be achieved 
by three steps. 

1) Assigning a label to each packet: The packets in 
the each previous cluster maynot be with the same type. For 
each cluster, we extract packets with the same type using 
the keywords extraction result, remove packets with other 
type, and further construct a new type cluster where packets 
have the same type. Then each packet will be assigned with 
a state according to the type cluster result. Each session can 
be represented as a label sequence, where an element of the 
sequence is a packet type. 

2) Searching the main state transition path: We mine 
protocol sequence patterns which occur in all packets of 
TypeCluster using PrefixSpan, and then get the longest 
sequence pattern as the main protocol path. Consequently, 
we build protocol state machine of main path.

3) Constructing the protocol state machine: Similar to 
Prospex, we build an augmented prefix tree acceptor (APTA) 
to accept all packet states in the same session, and leverage 
Exbar algorithm to find the minimal DFA which represents 
protocol state machine.

IV. EXPERIMENT EVALUATION

SSL protocol and SSH protocol are widely used in 
network. Needham-Schroeder (NS) public protocol and sof 
protocol are classical security protocols. We evaluate 
SPREA on the four classical security protocols, and the 

result shows SPREA can infer true protocol format and state 
machine effectively with high accuracy. 

A. Dataset 

Protocol dataset is shown in table 1, where NS program 
and sof program are generated by Spi2Java [23], and run in 
each host of LAN. Lua is an embedded scripting language 
supported by Wireshark. After capturing packets by 
Wireshark, we extract the related information of protocols by 
Lua and experiment using SPREA. 

TABLE I. PROTOCOL DATASET 

Protocol Flow 

number

Packet 

Number

Data Sources

SSL 4000 28468 WAN

SSH 270548 846382 InfoVisContest1

NS 2000 24000 LAN

sof 2000 24000 LAN

B. Parameters Setting 

We select 100 complete sessions from dataset for each 
protocol, as the training dataset. There are two important 
parameters—min_len for min-length-token and min_sup for 
the support threshold. Identification features are mostly 
included in the first protocol packet[24], so we set parameters 
according to the first packet. 

Figure 3. 1-position-token number under different min_sup 

Fig. 3 shows 1-positon-token number under different 
min_sup. Fig. 4 shows basic token number under different 
min_sup and min_len. When 0.6≤sup≤0.9, the mined basic 
token number begins to stabilize, so we set min_sup=0.6. 
When min_len=1, many redundant frequent items are 
extracted. When min_len≥2, the mined basic token number 
shows little change, so we set min_len=2.

C. Result 

The existing network-based methods mainly use private 
dataset, and parse the plaintext format of protocol and it is 
difficult to compare the methods with ours. In order to 
validate SPREA, we evaluate the performance of state 
machines using two metrics—recall and false positive. For 
each protocol, we select M sessions as the training set, used 
for inferring protocol state machine; the others is as the 
testing set, used for evaluating the inferred state machine. 
The recall of inferred state machines is used for measuring 
the coverage of the inferred automata, and is defined as the 

1 http://2009.hack.lu/index.php/InfoVisContest
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percentage of the valid sessions which are accepted by the 
inferred automata. The false positive of inferred state 
machines is used for measuring the soundness of the inferred 

automata, and is defined as the percentage of the invalid 
sessions which are accepted by the inferred automata. 

Figure 4. Basic token number under different min_sup and min_len 

Figure 5. Recall under different training set size M
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Note: √” represents correct parsing

Figure 6. Protocol format parsing result of the first packet. 

The metrics under different training set size M is shown 
in fig. 5. If M is small, not enough message diversity is 
available to support the construction of the automata. When 
M≥100, the recall is above 92.3%. On the other hand, the 
false positive is 0 under different M. The inferred state 
machines are of good quality. 

In order to evaluate the performance of the inferred 
message formats, when M=100, we compare the inferred 
message formats with published protocol specifications and 
Wireshark parsing results (for example, fig 6 is Protocol 
format parsing result of the first packet). It can be seen that 
SPREA can parse message formats for unknown security 
protocol effectively. 

V. CONCLUSIONS

We propose SPREA for security protocol reverse 
engineering. SPREA extracts protocol keywords sequences 
based on sequential pattern mining at the first time, which 
would provide a new idea for plaintext format parsing. Then 
SPREA locates ciphertext length field and the corresponding 
ciphertext field, and infers protocol state machines further. 
We evaluate SPREA on four classical security protocols. 
The results show that SPREA can reverse protocol 
effectively purely from network traces with high accuracy.  

However SPREA has limitations as follows. 1) 
Parameters—min_len and min_sup are selected by 
experimenting. Because the keywords distribution is 
different for different security protocols, the parameter 
setting may be also different. The parameter values in the 
paper are not the best for other protocols possibly. Though 
we can obtain the best parameter values by testing again, the 
process need manual intervention and is time-consuming. In 
future work, we should design an adaptive parameter setting 
method, which can adjust parameters adaptively for different 
protocols. 2) Because security protocols utilize many 
cryptographic techniques, we can not obtain protocol 
message format accurately and may not label packet types 
correctly. So we should introduce probability and confidence 
level to infer probabilistic state machine for security 
protocols 
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