
Automatic Reverse Engineering of Unknown Security Protocols from Network
Traces

Yudan Fan*, Yuna Zhu, Lin Yuan
Department of Information Security

Zhengzhou Information Science and Technology Institute
Zhengzhou, China

e-mail: 1151463213@qq.com

Abstract—Previous network-based protocol reverse
engineering methods have only considered plaintext format of
payload, and have not been suitable for security protocols
which include many ciphertext data. We propose a novel
approach to reverse security protocols from network traces–
named SPREA (security protocols reverse engineering
approach). SPREA extracts protocol keywords sequences
hierarchically using sequential pattern mining for the first
time, which would provide a new idea for plaintext format
parsing. On this basis, SPREA utilizes the randomness feature
of ciphertext data to locate ciphertext fields based on entropy
estimation. Then SPREA infers the state machine using
sequential pattern mining and Prospex method. Finally we
evaluate SPREA on four classical security protocols. The
experimental results show that without using dynamic binary
analysis, SPREA can parse true protocol format and infer state
machine purely from network traces with high accuracy.

Keywords-key managment; key aggragate; cloud storage;
CPA security

I. INTRODUCTION
With the extensive use of cryptographic techniques,

security protocols are widely used in many key network
applications. Meanwhile, new attacks against security
protocols are continuously increasing. The formal analysis
approaches of security protocols are based on specific
adversarial model to detect potential attacks, and can only
give security analysis results ideally. When considering the
dynamic factors during protocol running, the results are
inaccurate. So the formal analysis can not ensure protocol
security during actual running under the complicated and
changing environment. Therefore, it is a key problem to
analyze protocol security online and dynamically in the field
of information security.

It is a prerequisite of dynamic security analysis to
identify protocol, reconstruct protocol session and obtain the
current running status of protocol based on detailed protocol
specification. There are many private protocols with
non-published specifications at present. Their security can
not be analyzed using the existing protocol analysis tools, for
example, Wireshark. Therefore, security protocol reverse
engineering is important for dynamic security analysis of
protocol.

Security protocols include much ciphertext information.
Attackers can not decrypt cipertexts. They usually replay and
relay ciphertexts to attack protocols. Therefore, not only

plaintext formats need to be reversed, but also ciphertext
features need to be extracted.

The current protocol reverse engineering methods are
classified into program-based methods [1-6] and
network-based methods [7-15]. The former [1-6] analyze a
protocol using a program that implements the protocol as
input sources, and can reverse cryptographic protocols.
Prospex [3] first constructs an augmented prefix tree
acceptor (APTA) T to accept all the packet sequences in the
training set, and then use Exbar algorithm to find the
minimal DFA that is consistent with T. The obtained
minimal DFA represents protocol state machine. ReFormat[4]
is a system that aims at driving encrypted message format. It
monitors the program’s processing of the encrypt messages,
locates the buffers that contain the decrypted data, but can
only handle programs where there exists a single boundary
between decryption and normal protocol processing. To
solve the problem, Dispatcher [5-6] extends Reformat to
identify every instance of encryption, hashing, compression
and obfuscation, and to identify the buffers holding the
unencrypted data before encryption, but the universality and
accuracy of its identity strategies need to be validated further.
Program-based methods use dynamic data flow analysis to
understand how a program consumes an input message, but
the protocol program may not be obtained. They are hard to
realize and their applications are limited. Network-based
methods analyze a protocol using network traces which are
conveniently collected when a protocol parsing program is
unavailable. Compared with program-based methods, they
have fewer limitations and would be used wider. The
Protocol Informatics (PI) project [7] parses protocol message
formats using multiple string alignment algorithms found in
the bioinformatics field. Discoverer [8] proposes recursive
clustering and type-based sequence alignment to infer
message formats. In [9], the latent relationship among
n-grams is discovered by grouping protocol messages with
the same semantics, and then message formats are inferred
by keyword based clustering and cluster sequence alignment.
The above methods only extract message formats and fields,
not considering protocol state machines inference. It is
necessary for online security analysis of security protocols to
consider the order of protocol messages and to infer protocol
state machines. PEXT [10] divides protocol sessions into
different conversations. Each conversation represents a
protocol state, and the protocol state machine is inferred
according to state transform sequences. BFS [11] extracts the
relevant fields from arbitrary protocols to construct a state

1139

2018 IEEE 4th International Conference on Computer and Communications

978-1-5386-8339-2/18/$31.00 ©2018 IEEE

model. Wang et al. [12] propose P-PSM to infer a
probabilistic protocol state machine. Luo et al.[13] parse
massage formats based on the Apriori algorithm and infer
protocol state machines. Bossert G et. Al[11-12] initiate the
open-source project Netzob [14-15]. On the basis of an
extension Angluin L* Netzob inference Mealy automata of
protocols using network traces. Network-based methods only
consider the plaintext information of protocol, and don’t
apply to security protocols which include many ciphertext
data.

In this paper, we propose a new reverse engineering
method for security protocols, named SPREA. SPREA
extracts protocol invariable fields, variable fields, ciphertext
length fields and ciphertext fields, purely from network
traces, and infers protocol state machines. The main
contributions of this work are: 1)In the keywords sequences
extraction phrase, we mine the ordered keywords sequences,
using sequential pattern mining for the first time, to parse
protocol invariable invariable fields, variable fields. 2)In the
ciphertext fields identification phrase, on the basis of the
extracted keywords sequences, we utilize byte sample
entropy and entropy estimation to locate ciphertext field
according to the randomness feature of ciphertext, providing
a new idea for ciphertext information utilization. 3)In the
state machine inference phrase, we obtain the main state
transition path by sequential pattern mining, and further
discover protocol state machine based on Prospex[3] to
character the protocol behaviors.

II. PROBLEM STATEMENT

Definition 1: Protocol session refers to a complete
interaction between protocol participants .

Definition 2: Protocol packet payload sequence refers to
the order of bytes in packet payload, denoted by
p=<s1,s2,…si,…,sn>, where si 1≤i≤n belongs to a

FF}. n=|p|>0. |p| is
the length of p. The finite sequence set composed of the
same protocol’s p is referred as protocol sequence set.

Definition 3: Protocol keywords refer to the protocol
constants which represent packet type and transmit the
control information.

Protocol keywords include protocol name, version,
control codes and so on. They occur frequently in protocol
traces. According to the position of keywords, they are
divided into fixed offset keywords and non-fixed offset
keywords. There are one or more keywords in protocol
packets for mostly network protocols [1]. The control
information and user data are effectively distinguished using
keywords.

In view of the fact that data mining is the most effective
means for data analysis, classical association rule mining
methods are used for protocol keywords extraction[13][16], but
they only consider fixed offset keywords, and can not handle
the non-fixed offset keywords. Sequential pattern mining
extends association rules mining further to discover frequent
subsequences as patterns in a sequence database, widely
used in DNA sequences analysis, Web access pattern
analysis, etc.
In this paper, we first extract the ordered keywords
sequences based on sequential pattern mining. A Keyword
belongs to an invariable field, while bytes between two
keywords belong to a variable field. Then we locate
ciphertext fields in variable fields and infer protocol state
machines further.

III. SPREA METHODOLOGY

A. SPREA Architecture

SPREA architecture includes four phrases, as shown in
Fig. 1.

Figure 1. SPFPA architecture

1) Data pre-processing: we run the same protocol
program in each host of LAN, capture packets by Wireshark,
and filter the specified protocol traffic by filter rules for
public datasets. Then the pure protocol traffic is clustered
using statistical features, i.e. packet length, direction and
offset, to obtain the same type packets, and the protocol
packet payload sequences in the same cluster are extracted
further.

2) Keywords sequences extraction: We extract the
ordered keywords sequences based on sequential pattern
mining and consequently identify protocol invariable fields
and variable fields. We mine basic tokens of packet
payload sequences set in the same cluster—1-position-token
with fixed-offset and min-length-token with min_len
adjacent bytes. We build token-tree to store the basic
token information. We establish token projected database

1140

based on token-tree. Then we mine protocol pattern
hierarchically, and further obtain the ordered keywords
sequence.

3) Ciphertext fields identification: On the basis of
keywords sequences extraction, we parse the variable fields
between two keywords further. We utilize byte sample
entropy and entropy estimation to pre-locate ciphertext
fields according to the randomness feature of ciphertext.
We search ciphertext length fields heuristically, and further
locate ciphertext fields.

4) State machine inference: We assign label to each
packet, construct the main state transition path by sequential
pattern mining, and further infer protocol state machine
based on Prospex method [3].

B. Keywords Sequences Extraction

We analyze the features of sequential pattern mining for
security protocols, and propose a protocol sequential pattern
mining method to extract the ordered keywords.

1) Features of Sequential Pattern Mining for Security

Protocol: The existing sequential pattern mining methods
only consider the values of sequence elements, ignoring the
order of elements. They assume adjacent elements are
independent of each other. But a protocol sequence pattern
has its specific requirements:

The frequent patterns with adjacent bytes or fixed
position are more meaningful than others.
Protocol keywords are composed of one or more
bytes. Adjacent frequent patterns have more
semantic information than others. A fixed-offset
keywords are closely related to a position. Using
sequential pattern mining directly will produce many
redundant and short patterns, so we should utilize
the frequent patterns with adjacent byte or fixed
position to improve the efficiency of protocol
sequential mining.
We should mine protocol keywords sequences
hierarchically and sequentially and need not discover
all the protocol sequential patterns. The byte
sequence of a protocol payload is ordered and
continuous. The keywords are also in order. So we
should extract keywords sequences combing with
the ordered feature.

In conclusion, to meet the needs of protocol sequential
pattern mining, we will design a sequential pattern mining
method for security protocol to extract protocol keywords.

2) Basic Token Mining: We mine frequent bytes with
fixed position for fixed-offset keywords, and frequent
adjacent byte sequences which are greater than min_len for
non-fixed offset keywords.

Definition 4: Support sup: Given protocol sequences set
P (see definition 2), where p P, if a sequence x is a
subsequence of p, then s(x)=1, else s(x)=0. The support of x
in P is defined as sup(x)= () /

p P

s x P , where |p| is the total

sequence number of P.

Definition 5: 1-poistion-token: Given a user-specified
min_sup threshold, if a byte x always appears at the fixed
position, and sup(x)≥min_sup, then the byte x is referred as
1-position-token.

Definition 6: min-length-token: Given two
user-specified thresholds—min_sup and min_len, if x is a
adjacent byte sequence with min_len length, and
sup(x)≥min_sup, then sequence x is referred as
min-length-token.

We encode the raw byte sequence of a packet payload.
Each byte is encoded as 5 characters. The first three are
hexadecimal value of the byte offset. The fourth and fifth are
hexadecimal value of the byte. Then we mine frequent
1-items in encoded protocol sequences set to find
1-position-tokens and the corresponding position
information.

A byte in a min-length-token may be a 1-positon-token.
To mine min-length-tokens which are disjoint with
1-position-token set, we encode the bytes except for
1-positon-tokens in a raw payload sequence, i.e., the
sequence between two 1-poistion-tokens X=b1,b2,…,bk (for
the last 1-position-token, X is the byte sequence after the
token) is encoded. Each element is bytes with min_len length,
X’=b1…bmin_len, b2…bmin_len+1,…,bk-min_len+1…bk. Then we
mine min-length-tokens in the encoded sequence set.

3) Token-tree Construction: Combining with the
ordering feature of tokens, we present a new tree structure
based on FP-tree[17] to store basic tokens information of
protocol sequences.

Definition 7: Token-tree: Token-tree is composed of
root, prefix sub-tree constituted by basic tokens, and basic
token head table. Each node (except root) is represented
by (token-name, count, offset, overlap, pnode), where
token-name is the name of basic token related to the node;
count is the number of sequences which include the token;
offset is the token’s position, when position is non-fixed, it is
null; overlap is the number of bytes which overlap its parent
node; pnode represents the parent node thread. A
n-length-token with n byte length Tn=b1b2…bn
(n>min_len) can be represented as connection of t basic

tokens (min_ 1
min_

n

t n len

len

). In order to

include the total basic tokens for token-tree, the value of
overlap is:

0 if a node and its parent node are disjoint and their positons are adjacent
-1 if a node and its parent node are overlap with -1 bytes and

 the
min_len min_len

overlap

ir positons are adjacent
 if the positions of a node and its parent node are nonadjacentnull

Each tuple of token head table is composed of token
name and Node-link (a pointer to the first node with the
same token name in token-tree). Pointers of the same token
are connected to a link. Considering the ordering of
protocol byte sequence, each branch’s nodes are ordered in
accordance with that they appear in protocol sequences. In
the prefix sub-tree of basic tokens, if a sequence’s prefix is
not the same as any sequence’s of the existing branches in

1141

token-tree, we create a new branch from the root node.Tree
with the above characteristics is referred as token-tree.

Definition 7: Tokens join: If t1 and t2 are basic tokens,
1 1 2 l
t b b b

l
b

l
, 2 1 2 '' ' '

l
t b b b ''

l
b , and the last m bytes of t1 are

the same as the first m bytes of t2 (m<l m<l’) , then the
join of t1 and t2 is 1 2 m 1 '' '

m l
b b b b bm 1 ''

m lm 1m 1b b b'm 1m 1 , denoted t1ǁm t2.
Definition 8: Token sequence: A node of token-tree is

denoted by nodek =(tk, countk , offsetk, overlapk, pnodek).
For any two nodes nodei and nodej in a branch of token-tree,
the path between the two nodes nodei→nodei+1…→nodej
represents token sequence

1 21|| || ||
i i j

i overlap i overlap overlap j
t t t||

j
overlap

||
j

t .
Token-tree Property 1: The support of any node (except

root) is not less than the support of its descendant nodes.
Proof: When multiple sequences include tokens with the

same prefix, the tokens are stored by the same branch in
token-tree. Therefore, if a protocol sequence includes a node
of token-tree, then it must include all ancestor nodes of the
node, and consequently ancestor nodes’ support is greater
than the node’s.

Token-tree Property 2: For a branch path from root to a
token node nodek , the support of the path’s corresponding
sequence is equal to the support of nodek.

Proof: Protocol sequences are ordered. The path also
follows the order of protocol sequences. From property 1 we
can see that when a branch include nodek, it must include all
the ancestor nodes of nodek —node1, node2, …nodek-1.
Therefore, the support of sequence corresponded to
root→node1→node2… →nodek is equal to the support of
nodek

4) Protocol Sequential Pattern Mining: Protocol
packets are parsed hierarchically from left to right.
Consequently, we generate token projected database based
on token-tree to mine protocol keywords sequences
hierarchically.

PrefixSpan[18] need not generate candidate frequent
itemsets. Its idea is that the prefix sequence of a frequent
sequence is also frequent, and a sequence can be obtained by
extending prefix sub-sequence through limited steps.
Inspired by PrefixSpan, we construct token projected
database to mine protocol sequence patterns.

Definition 10: Token projection and token projected
database: Given two token sequences x1 and x2, where

1 2 11 1 2|| || ||
n

l l l n
x t t t

1
||

n
l n1

||
n

t||
l n

|| , ' ' '
1 2 1

' ' '
2 1 2|| || ||

m

m
l l l

x t t t
1

'||
m

m
l

||
m

t'||
m

l

|| (m<n l
i
is

the overlapped bytes between t
i+1

and t
i

'
i

l is the overlapped

bytes between '
1i

t and '
i

t), x
2
 is a sub-sequence of x1 (x2≠x1),

if a token sequence " " "
1 2 1

" " "
3 1 2|| || ||

m

m
l l l

x t t t
1

"||
m

m
l

||
m

t"||
m

l

|| (m<k=n) exists,
which satisfies 1) x2 is a prefix of x3, 2)x3 is the longest
sub-sequence of x1 which satisfies 1), then x3 is the
projection of x1 with regard to x2. In protocol sequence set,
the set composed of all the x2’s suffix sequences in x3 is
referred as the projection database of x2.

The projection of any protocol token node ti is the
corresponding sequence of the path from ti to leaf nodes. In

protocol sequence set, the projection database of ti is the set
composed of sequences corresponded to all sub-tree after ti .

PrefixSpan projects for all the frequent 1-item iteratively.
But protocol sequences are in order. In a branch of token-tree,
the projection of a node includes the projections of its
descendant nodes. We project hierarchically in accordance
with the hierarchical order of token-tree, without generating
projections of all the frequent tokens, as shown in fig. 2.

Figure 2. Sequential pattern mining

We discover 1-tokenset Token1—a set composed of
the first tier token.

We project with regard to each token in Token1. In
the projection database of token1 (token1 Token1),
we search vertically according to the branches of
token-tree, and compute the support of the second
tier tokens (the descendant nodes of token1, denoted
token2). If sup(token2)≥min_sup in the
projection of token1, we continue to project token2
iteratively. i.e., in the projection database of token2,
we search the third tier tokens vertically (the
descendant nodes of token2, denoted token3). If
sup(token2) <min_sup in the projection of token1,
according to property 1 in section 3.2.3, the support
of token2’s descendant nodes is less than min_sup,
then we will not project for the branch.
In the projection of tokeni, we compute the support
of the (i+1)th tokens (the descendant nodes of tokeni,
denoted tokeni+1). We do this iteratively until reach
leaf nodes of each branch in token-tree, and
consequently extract keywords sequences of packets
in the same cluster.

1142

We analyze the features of sequential pattern mining for
security protocols, and propose a protocol sequential pattern
mining method to extract the ordered keywords.

C. Ciphertext Field Identification

1) Ciphertext Field Pre-location: Protocol fields are
always in bytes[8]. We take payload bytes with the same
offset as a random variable, and describe byte distribution
by entropy. Security protocols always use fresh random
numbers which are not usually contained in other network
protocols to prevent attacks. We take random number fields
as generalized ciphertext fields.

Definition 9: Byte sample entropy: Given a set with the
same type protocol packets { }

i
packet (1 i N), if

j
x

is a byte variable with offset j in packets (the value range of

j
x is 0-255), the byte sample entropy of

j
x is

255

1
() log

j k k

k

H x f f , where
k

f is the frequency of
i

x with

value k in{ }
i

packet .
A ciphertext byte variable satisfies the uniform

distribution approximately [19]. If a byte belongs to a
ciphertext field, it takes random values in network flows. Its
entropy is maximal because of its uncertainty. The value of a
plaintext byte variable is in certain extent, because protocol
specification has specific semantics. If a byte belongs to a
plaintext field, its entropy is less than the entropy of a
ciphertext byte. So we present a ciphertext field pre-location
algorithm based on entropy, as shown in algorithm 1.

Algorithm 1. Ciphertext field pre-location algorithm
Input: payload byte sequence P of packets with the similar format, protocol keywords

sequences;
Output: ciphertext distribution interval I= {I1, I2,…,I

K
}, the interval number K.

1: For each keyword K
2: find the next Keyword K’ and obtain the byte sequence between the two keywords;
3: for each byte variable B

i

4: E=ByteEntroyCompute(B
i
);

5: E’=N-truncated-entroyCompute ();
6: CompareEntroy(E,E’); // to determine whether the byte belong to ciphertext
7: End for
8: Record the ciphertext Byte;
9: Merger the continuous ciphertext Byte as ciphertext interval ;
10: End for
11: Return I, K

Compute byte sample entropy : On the basis of
keywords extraction, we extract the byte sequence
between two keywords, take bytes with the same
offset (we count offset from the position of the front
keyword) as random variables, and compute byte

sample entropy
255

1
() log

j k k

k

H x f f .

Entropy estimation: The uniform distribution is the
maximum entropy distribution among all continuous
distributions. Its entropy is

255

1

1 1log log 256 8
256 256

k

ideally. But byte

sample entropy is related to the selected sample. If
the sample length N is finite, especially N~256 or
N<256, there are errors between the value of byte
sample entropy and 8. Only when N , the value
of byte sample entropy is 8 approximately [20]. So
we can note compare the value of byte sample
entropy with 8 directly.

To identify ciphertext byte variables, we use entropy
estimation to compute the entropy of uniform distribution
with N sample numbers (16N

[21]), and compare it with
the value of byte sample entropy. When 0,1, ,255{ }

i i
p p

satisfies the uniform distribution, N-truncated entropy

0 255
0 255

255

, , 00 255

1() log
, ,256

i i

N N

n n i

n n

N n n

H p

n n N N
255n

n 00n 0n

255255n

00255 00 255n255n

[20] is an unbiased estimator, where
i

n is frequency of value

i ,
0 255 0 255

!
, , ! !

N N

n n n n255n 255 !255

. Specifically, generate all

possible sample of length N according to p; estimate the
entropy based on Maximum Likelihood Estimation (MLE);

take the average of the MLE estimates as H
N
(p).

Pre-locate distribution interval of ciphertext:
ompute N-truncated entropy H

N
(p) of the uniform

distribution and its confidence interval
ˆ() 4 ()MLE

N N
H p SD H by Monte-Carlo method
according to [10] (When N>16, the confidence level
is 99.9% approximately[10]), where ˆ()MLE

N
SD H is

standard deviation of ˆ MLE

N
H . Compare byte

sample entropy with H
N
(p). If a byte entropy lies

confidence interval, the byte satisfies the uniform
distribution and is a ciphertext byte. Merger the
continuous ciphertext bytes as ciphertext interval.

1143

2) Ciphertext-field Boundary Location: The relative
position with regard to keywords and the length of a
ciphertext may be variable. Therefore the pre-located
ciphertext interval may be not ciphertext field boundary.

A ciphertext format is as follows. Length field||
ciphertext data with variable length. The length of a
ciphertext is related to cryptographic algorithm, plaintext
length and key length. It is usually variable. Variable fields
must use a length field before it, so that the protocol receiver
can parse it. Ciphertext data with fixed length. In this case,
there is not a length field before ciphertext possibly.

According to the relative position of a ciphertext and a
keyword, there are two cases. The relative position of a
ciphertext is fixed. If the ciphertext length is fixed, the
pre-located ciphertext interval is the ciphertext field
boundary, or else, the start position of pre-located ciphertext
interval is also that of the ciphertext field, but the end
position of the ciphertext field is uncertain. The relative
position of a ciphertext is variable. The pre-located

ciphertext interval is a part of ciphertext field, but the
boundary of ciphertext field is uncertain.

Therefore, after pre-locating ciphertext interval, we
search ciphertext length fields heuristically and locate the
boundary of ciphertext fields further (we mainly consider
length fields represented by hexadecimal numbers).

The identify strategies of ciphertext length fields are as
follows. Ciphertext length fields are usually represented
by hexadecimal numbers of 1~2B length. The length of a
protocol ciphertext is limited, usually 128b~4096b, and the
corresponding decimal number is 16~512. A ciphertext
length field is related to a ciphertext length. The length
changes with the ciphertext length. Ciphertext length
field can not appear after its related ciphertext.

The length of pre-location ciphertext interval I
i
 by section

3.3.1 is denoted as 1l (in B). The byte sequence between the
start keyword and I

i
’s start position is denoted as BS. In BS,

the length between a byte and the next keyword is denoted as

2l (in B). The ciphertext-field boundary location algorithm is
shown in algorithm 2.

Algorithm 2: Ciphertext-field boundary location algorithm
Input: ciphertext field interval I= {I1, I2,…,I

K
}, the interval number K.

Output: ciphertext field C= {C1, C2,…,C
m
}, ciphertext field number m.

1: For each distribution interval I
i

2: If l1≥16 then
3: n=OneByteValue(BS);
4: m=TwoByteVaule(BS);
5: if l1≤n≤l2 or m≤min(l2, 512) then
6: ByteRocord(); // record the byte which is a possible ciphertext length field
7: End if
8: End if
9: L=CiphertextLength (n,m); // determine ciphertext length field
10: If L=Null then
11: PlaintextLengFieldSearch(BS);
12: Obtain ciphertext field hierarchically;
13: End if
14: End for
15: Return C, m

Searching all the possible ciphertext length fields in
BS. If 1 16l , there may exist a ciphertext field
between keywords. We compute the values of each
byte n and each two continuous bytes m. if

1 2l n l or 2min(,512)m l , we record a
length vector (the start keyword K, the end keyword
K’, the relative offset O of byte with regard to K,
byte value, the corresponding byte sequence);
When m=n (for example both “00 C0” and “C0” are
length fields), the length fields are overlap, and we
take m as the preferred length field.

Determining if the recorded n and m are length
fields further. If the intersection of the length vectors
(the start keyword K, the end keyword K’, the
relative offset O of byte) is not null, O is fixed, the

intersection element is the correct length vector and
the corresponding byte sequence is the ciphertext
field; else O is variable, we will search plaintext
length fields further to identify plaintext fields, and
parse packets left-to-right hierarchically to locate the
ciphertext field boundary.

Obtaining the ciphertext field boundary when there
is not a ciphertext length field. In this case, the
length of the ciphertext is fixed. We will search
plaintext length fields further. If there is not a
paintext length fields, the paintext length is also
fixed and the relative offset of the ciphertext is fixed,
consequently the pre-located ciphertext interval is
the ciphertext field; else we identify plaintext fields
using plaintext length fields, and parse packets
left-to-right to locate the ciphertext field boundary.

1144

D. State Machine Inference

State machine inference algorithm is shown in algorithm
3.

Algorithm 3. State machine inference algorithm.

Input: clusters of protocol CP, keywords sequence

set K, ciphertext fields C

Output: protocol state machines.

1: TypeCluster=Clusterhandle(CP, K);

2: LabelAssign(TypeCluster);

3: represent each session as a label sequence, obtain

label sequences set L

3: PrefixSpan(L)

4: GetLonegestPattern();

5: M=GetMainPath();

6 :T=APTA(L, M)

7: Exbar(T)

8: Return state machines

The goal of state machine inference is to reveal the order
in which different types of messages should be sent and to
character the protocol behaviors. This object can be achieved
by three steps.

1) Assigning a label to each packet: The packets in
the each previous cluster maynot be with the same type. For
each cluster, we extract packets with the same type using
the keywords extraction result, remove packets with other
type, and further construct a new type cluster where packets
have the same type. Then each packet will be assigned with
a state according to the type cluster result. Each session can
be represented as a label sequence, where an element of the
sequence is a packet type.

2) Searching the main state transition path: We mine
protocol sequence patterns which occur in all packets of
TypeCluster using PrefixSpan, and then get the longest
sequence pattern as the main protocol path. Consequently,
we build protocol state machine of main path.

3) Constructing the protocol state machine: Similar to
Prospex, we build an augmented prefix tree acceptor (APTA)
to accept all packet states in the same session, and leverage
Exbar algorithm to find the minimal DFA which represents
protocol state machine.

IV. EXPERIMENT EVALUATION

SSL protocol and SSH protocol are widely used in
network. Needham-Schroeder (NS) public protocol and sof
protocol are classical security protocols. We evaluate
SPREA on the four classical security protocols, and the

result shows SPREA can infer true protocol format and state
machine effectively with high accuracy.

A. Dataset

Protocol dataset is shown in table 1, where NS program
and sof program are generated by Spi2Java [23], and run in
each host of LAN. Lua is an embedded scripting language
supported by Wireshark. After capturing packets by
Wireshark, we extract the related information of protocols by
Lua and experiment using SPREA.

TABLE I. PROTOCOL DATASET

Protocol Flow

number

Packet

Number

Data Sources

SSL 4000 28468 WAN

SSH 270548 846382 InfoVisContest1

NS 2000 24000 LAN

sof 2000 24000 LAN

B. Parameters Setting

We select 100 complete sessions from dataset for each
protocol, as the training dataset. There are two important
parameters—min_len for min-length-token and min_sup for
the support threshold. Identification features are mostly
included in the first protocol packet[24], so we set parameters
according to the first packet.

Figure 3. 1-position-token number under different min_sup

Fig. 3 shows 1-positon-token number under different
min_sup. Fig. 4 shows basic token number under different
min_sup and min_len. When 0.6≤sup≤0.9, the mined basic
token number begins to stabilize, so we set min_sup=0.6.
When min_len=1, many redundant frequent items are
extracted. When min_len≥2, the mined basic token number
shows little change, so we set min_len=2.

C. Result

The existing network-based methods mainly use private
dataset, and parse the plaintext format of protocol and it is
difficult to compare the methods with ours. In order to
validate SPREA, we evaluate the performance of state
machines using two metrics—recall and false positive. For
each protocol, we select M sessions as the training set, used
for inferring protocol state machine; the others is as the
testing set, used for evaluating the inferred state machine.
The recall of inferred state machines is used for measuring
the coverage of the inferred automata, and is defined as the

1 http://2009.hack.lu/index.php/InfoVisContest

1145

percentage of the valid sessions which are accepted by the
inferred automata. The false positive of inferred state
machines is used for measuring the soundness of the inferred

automata, and is defined as the percentage of the invalid
sessions which are accepted by the inferred automata.

Figure 4. Basic token number under different min_sup and min_len

Figure 5. Recall under different training set size M

1146

Note: √” represents correct parsing

Figure 6. Protocol format parsing result of the first packet.

The metrics under different training set size M is shown
in fig. 5. If M is small, not enough message diversity is
available to support the construction of the automata. When
M≥100, the recall is above 92.3%. On the other hand, the
false positive is 0 under different M. The inferred state
machines are of good quality.

In order to evaluate the performance of the inferred
message formats, when M=100, we compare the inferred
message formats with published protocol specifications and
Wireshark parsing results (for example, fig 6 is Protocol
format parsing result of the first packet). It can be seen that
SPREA can parse message formats for unknown security
protocol effectively.

V. CONCLUSIONS

We propose SPREA for security protocol reverse
engineering. SPREA extracts protocol keywords sequences
based on sequential pattern mining at the first time, which
would provide a new idea for plaintext format parsing. Then
SPREA locates ciphertext length field and the corresponding
ciphertext field, and infers protocol state machines further.
We evaluate SPREA on four classical security protocols.
The results show that SPREA can reverse protocol
effectively purely from network traces with high accuracy.

However SPREA has limitations as follows. 1)
Parameters—min_len and min_sup are selected by
experimenting. Because the keywords distribution is
different for different security protocols, the parameter
setting may be also different. The parameter values in the
paper are not the best for other protocols possibly. Though
we can obtain the best parameter values by testing again, the
process need manual intervention and is time-consuming. In
future work, we should design an adaptive parameter setting
method, which can adjust parameters adaptively for different
protocols. 2) Because security protocols utilize many
cryptographic techniques, we can not obtain protocol
message format accurately and may not label packet types
correctly. So we should introduce probability and confidence
level to infer probabilistic state machine for security
protocols

REFERENCES

[1] Caballero J, Yin H, Liang Zhenkai, et al. Polyglot: Automatic
extraction of protocol message format using dynamic binary
analysis[C]. Proc. of the 14th ACM Conference. on Computer and
Communications Security, New York: ACM, 2007. 317−329

[2] Cui Weidong, Peinado M, Chen K, et al. Tupni: automatic reverse
engineering of input formats C . Proc of the 15th ACM Conference

on Computer and Communications Security, New York: ACM, 2008:
391-402

[3] Comparetti P M, Wondracek G, Kruegel C et al. Prospex: protocol
specification extraction C . Proc of the 30th IEEE Symposium on
Security and Privacy, Washington : IEEE, 2009: 110-125

[4] Wang Zhi, Jiang Xuxian, Cui Weidong, et al ReFormat: automatic
reverse engineering of encrypted messages C . Proc of European
Symposium on Research in Computer Security, Berlin : Springer,
2009: 200-215

[5] Caballero J, Poosankam P, Kreibich C, et al Dispatcher: enabling
active botnet infiltration using automatic protocol
reverse-engineering[C].Proc of the 16th ACM Conference on
Computer and Communications Security, New York: ACM, 2009:
621-634

[6] Caballero J Song D Automatic protocol reverse-engineering:
message format extraction and field semantics inference[J]. Computer
Network, 2013, 57(2): 451-474

[7] Beddoe M.The Protocol information project[EB/OL]. [2004-10-05],
http://www. tphi.net/ awalters/ PI.html

[8] Cui Weidong, Kannan J, Wang H J. Discoverer: Automatic protocol
reverse engineering from network traces[C]. Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium.
Berkeley: USENIX, 2007: 199-212

[9] Wang Y, Yun X, Shafiq M Z, et al. A semantics aware approach to
automated reverse engineering unknown protocols[C]//Network
Protocols (ICNP), 2012 20th IEEE International Conference on. IEEE,
2012: 1-10.

[10] Shevertalov M, Mancoridis S. A reverse engineering tool for
extracting protocols of networked applications[C]//Reverse
Engineering, 2007. WCRE 2007. 14th Working Conference on. IEEE,
2007: 229-238.

[11] Trifilo A, Burschka S, Biersack E. Traffic to protocol reverse
engineering[C]//Computational Intelligence for Security and Defense
Applications, 2009. CISDA 2009. IEEE Symposium on. IEEE, 2009:
1-8.

[12] Yipeng Wang, Zhibin Zhang, Danfeng etc. Inferring Protocol State
Machine from Network Traces: A Probabilistic Approach. Applied
Cryptography and Network Security 2011, Volume 6715 1-18.

[13] Luo Jianzhen, Yu Shunzheng. Position-based automatic reverse
engineering of network protocols[J]. Journal of Network and
Computer Application. 2013(36):1070-1077

[14] Olivier Tétard. . Netzob. [EB/OL]. [2013-02-02],
http://www.netzob.org/

[15] Bossert G, Guihéry F, Hiet G. Towards automated protocol reverse
engineering using semantic information[C]. Proceedings of the 9th
ACM symposium on Information, computer and communications
security. New York, Honolulu, HI, 2014:51-62

[16] Yuan Zhenlong, Xue Yibo, Dong Yingfei. Harvesting Unique
Characteristics in Packet Sequences for Effective Application
Classification[C]. Proc. of the 1st IEEE Conference on
Communications and Network Security (CNS), National Harbor:
IEEE, 2013:341-349

1147

[17] Han Jiawei, Pei Jian, Yin Yiwen. Mining frequent patterns without
candidate generation[C]. Proc of ACM SIGMOD. New York: ACM,
2000:1-11

[18] Pei Jian Han Jiawei Mortazavi-Asl B et al. Mining sequential
patterns by pattern growth: The PrefixSpan approach[J]. IEEE Trans
on Knowledge and Data Engineering, 2004, 16(10): 1-17

[19] Bonfiglio D, Mellia M , Meo M, etal. Revealing Skype Traffic: When
Randomness Plays with You. SIGCOMM Comput. Commun. Rev.,
37(4):37-48, 2007.

[20] Olivain J . Goubault-Larrecq J. Detecting subverted cryptographic
protocols by entropy checking. Research report LSV-06-13, 2006.

[21] Paninski, L.: A coincidence-based test for uniformity given very
sparsely sampled discrete data[J]. IEEE Transactions on Information
Theory. 2008, 54(10), 4750-4755

[22] Pironti A, Pozza D, Sisto R. Spi2Java User Manual-Version 3.1[R].
Torino: Polytechnic University of Turin, 2008

[23] Aceto G, Dainotti A Donato W, et al. PortLoad: Taking the best of
two worlds in traffic classification[C] //Proc IEEE INFOCOM. New
York: IEEE Communications Society, 2010:1-5.

1148

