
A parallel model on Internet Protocol Security based
on Pi-calculus

Hui Kang

Jilin University

Computer Science and

Technology

Changchun,China

kanghui@jlu.edu.cn

Qiuwen Yin

Jilin University

Computer Science and

Technology

Changchun,China

yinqw15@mails.jlu.edu.cn

Zi Hui

Jilin University

Computer Science and

Technology

Changchun,China

294042460@qq.com

Fang Mei *

Jilin University

Computer Science and

Technology

Changchun,China

meifang@jlu.edu.cn

Abstract—IPSec protocol provides security services for network

layer of OSI model. With information security becomes acute,

its efficiency and security need to be improved. In this paper, we

propose a parallel model for IPSec protocol framework based on

Pi-calculus, analysing the part that can be paralleled in running

process of the protocol and using Pi-calculus to describe message

delivery. Then we use Pict, which is a programming language

based on Pi-calculus, to implement and verify that compared to

serial model, this parallel model gets obvious improvement on

both running time and memory using.

Keywords-component; IPSec protocol; parallel model; Pi

calculus; Pict

I. INTRODUCTION

IPSec protocol[1] is a serious of protocol standards made
by IETF(Internet Engineering Task Force),which is put
forward to provides security services for network layer of OSI
model including the protect of packets and defense against
network attacks.With IPv6 replacing IPv4 increasingly, IPSec
is in a wide range of uses and rising trend.So it is quite
significant to improve the implementation of IPSec protocol
suite in a more efficient way.

Pi-calculus[2] has a great obvious superiority in
simulating dynamic communication topology,with strong
ability on elaborate modeling and formal description of
parallel and distributed system. Therefore, according to IPSec
protocol family as well as its application and prototype of
IPSec protocol used on Linux 2.6[3], an IPSec protocol
parallel model is put forward based on Pi-calculus. We
realized IPSec protocol model by Pict and C programming
language, and compared them in running time and memory
usage,then we verified that there is a definite improvement in
efficiency of IPSec protocol parallel model.

II. IPSEC PROTOCOL FRAMEWORK PARALLEL MODELING

There are three parts of IPSec framework in Linux 2.6

kernel，including incoming, forwarding and outgoing packets

process.

 Incoming process: First,receive data from data link layer
and check head of IP packet to make sure its integrity. Then
start router discovery in route cache. If routing information
could be found, loop forwarding these packets, which means

sending a number of packets to the handler functions pionters

point to. If not, create route cache, then forward them. As for
local packets, recombine the IP fragments and deliver a
complete packet to upper layer protocol. And there are three
security strategies to do some check, including using IPSec,
not using IPSec and discard. Using IPSec means unpacking
and search encapsulation type, while not using means deliver
to transport layer directly.

Forwarding process: As for the packets from incoming
process, check their security and construct routing table entry
according to security strategies. The packets need to be safely
encapsulated many times until an IPSec packet can be sent out,
adding a routing table entry every time encapsulated. In this
part, it only needs to deal with the ones that are not IPSec
packets.

Outgoing process: For the packets from transport layer
coming into this module, searching the route, if it exists, IPSec
packets will be encapsulated. If not, it will add a new route
entry and encapsulate IPSec packets and head of IP packets.
This module is mainly used for the packets from transport
layer to data link layer with them well encapsulated.

The mainly difference between Pi-calculus and process
calculus like CCS and CSP is that name is the only one thing
existing in the communication of Pi-calculus, which cannel,
variable, data and parameter all can be regarded as a name. So
Pi-calculus has two kinds of entities: process and name, and
we can learn more about its grammar on relevant references.

By analysing parallelizable parts of IPSec protocol,
combining the concurrency of message delivery in Pi-calculus,
we define a parallel model of IPSec framework based on Pi-
calculus.

The parallel model can be divided into seven modules
through an abstract representation of packets receiving,
forwarding and sending. The modules include data link layer,
local packets processing, input processing, forward processing,
output processing, encapsulation processing and transport layer.
In Figure 1,the letters a,b,c,g,h,j,k,m and n indicate channels
used for message delivery. Figure 2 indicates transition graphs
of the parallel model after analysing every module in detail.
Channel ch0,ch1...ch27 are used to transmit messages.
Transport process and formal description will be given in next
section.

*Corresponding author

Figure 1. Channel graph of seven modules in IPSec parallel model

III. FORMALIZED DESCRIPTION OF PARALLEL MODEL BASED

ON PI-CALCULUS

After understanding the process of IPSec protocol
framework and analyzing the parallel model of the Pi-calculus
created, the details of its overall and internal operations can be
described well.

� The channels and messages associated with the data link

layer module can be represented as }_,,{
~

buffsknad =

and D is a process which represents its internal operations.
The Pi-calculus expression of this module receiving and
sending packets is:

DegeencapPackabuffskn

lgelocalPackabuffskaDdyerdataLinkLa
def

).~()._(

|)
~

(._.)
~

(

　　　　　　　　　

><=

The data link layer module involves two modules: output
processing and local packet processing, both of which can be
executed in parallel. Sk_buff is a very important structure of
the TCP / IP protocol stack in the Linux kernel and all the
operations to packets of IPSec protocol in this paper are
carried out around the sk_buff. So the messages passed in this
model are all sk_buff.

� The channels and messages associated with the local
packet module can be represented as

}_,,,,{
~

buffskgcbal = and process L represents its

internal operations. The Pi-calculus expression of this
module receiving and sending packets is:

Figure 2. Transition graph of IPSec parallel model

3.forwardPackage

0.dataLinkLayer

1.localPackage

2.inputPackage 4.outputPackage

6.transportLayer

5.encapPackage

a

b

c

h

j

n

m

k

g

53.ipOutput

33.InApply

52.OutApply

51.loopForwardOut

0.dataLink

111.packageCheck

12.searchRoute

112.setRouteInfo

13.insertRou

teIn

14.loopForwardIn

21.localDeliver

22.ipDefrag

23.ifPolicy

31.policyCheck

34.Discard

32.byPass

43.OutApply

42.PolicyCheck

41.ipForward

52.IPSecOutput

6.Transport

Ch0

Ch1

Ch2

Ch4

Ch3

Ch5

Ch27

Ch26

Ch17

Ch18

Ch19

Ch11

Ch12 Ch13

Ch16

Ch10

Ch8

Ch9

Ch7

ipQueueXmix

insertRouteOut

Ch6

Ch14

Ch20

Ch22

Ch23

Ch21

Ch24

Ch25

Ch15

　　　　　　　　　

　　　　　　　　　

　　　　　　　　　

))
~

(._

)
~

(._(

.))._(|)_(()
~

(

fkageforwardPacbuffskc

igeinputPackabuffskb

LbuffskgbuffskalgelocalPacka
def

><+

><

=

� The channels and messages associated with the input
processing module can be represented as

},,,,_,,,{ discardapplybypassselectorbuffskhgbi = and

process I represents its internal operations.The Pi-
calculus expression of this module receiving and sending
packets is:

))
~

(._

][))
~

(

._]([

.).,_()
~

(

dyerdataLinkLabuffskg

applyselectortayertransportL

buffskdbypassselector

IselectorbuffskbigeinputPacka
def

><

=+

><=

=

　　　　　　　　

　　　　　　　　

　　　　　　　　　

Input processing module receives sk_buff and selector
from the process local Package through channel b and then
reach the process I.If the selector is bypass,sk_ buff is sent to
the process transportLayer along channel d;if selector is apply,
sk_buff is sent to the process dataLinkLayer along channel g.

� The channels and messages associated with the input
processing module can be represented as

}_,,{
~

buffskjcf = and process F represents its internal

operations.The Pi-calculus expression of this module
receiving and sending packets is:

)~(.

_
~

.)._()
~

(

oageoutputPack

buffskjFbuffskcfkageforwardPac
def

　　　　　　　　　　

><=

� The channels and messages associated with the input
processing module can be represented as

}_,,{
~

buffskkht = and process T represents its internal

operations.The Pi-calculus expression of this module
receiving and sending packets is:

)~(._

|)._()
~

(

oageoutputPackbuffskk

TbuffskhtayertransportL
def

><

=

　　　　　　　　

� The channels and messages associated with the input
processing module can be represented as

}_,,{~ buffskmko = and process O represents its internal

operations.The Pi-calculus expression of this module
receiving and sending packets is:

)~(

._.)._()~(

egeencapPacka

buffskmObuffskkoageoutputPack
def

　　　　　　　　

><=

� The channels and messages associated with the input
processing module can be represented as

}_,,,{~ buffsknmje = and process E represents its

internal operations.The Pi-calculus expression of this
module receiving and sending packets is:

))
~

(._.

)._(|)_(()~(

dyerdataLinkLabuffskn

EbuffskmbuffskjegeencapPacka
def

><

=

　　　　　　　　　

The internal operation of each module is analyzed and
modeled in detail as follows:

Figure 3. Channel graph of atomic operation on the local package processing

module

In Figure 3, for the internal operation of the process
localPackage L, it can be refined to policyCheck,
setRouteInfo, searchRoute, insertRouteIn, loopForwardIn and
other atomic operations.

� The channels and messages associated with the process L
can be represented as
� { 1, 2, 3, 4, _ , _ , , }inl ch ch ch ch sk buff skb dst yes no= .The

Pi-calculus expression of the process L is:

�() . 1 _ .

2 _ . . _

(3 _ , _ [_].

4 _ , _

[_]. .

def

L inl packageCheck ch sk buff setRouteInfo

ch sk buff searchRoute new skb dst

ch sk buff skb dst skb dst yes

loopForwardIn ch sk buff skb dst

skb dst no insertRouteIn c

= < >

< >

< > =

+ < >

=

　　　　. 　

　　　　　

　　　　

　　　　　 5 _

.)

h sk buff

loopForwardIn

< >

　　　　　

ch1

ch2

ch5

ch4

11.packageCheck

12.setRouteInfo

15.loopForwardIn

13.searchRoute

14.insertRouteIn
ch3

Figure 4. Channel graph of atomic operation on the input processing module

In Figure 4, for the internal operation of the process input
Package I, it can be refined to local
Deliver,ipDrag,ifPolicy,policyCheck,bypass,DiscardapplyIn
and other atomic operations.

� The channels and messages associated with the process I
can be represented

as � { 8, 9, 10, 11, 12, 13, 14, _ ,ini ch ch ch ch ch ch ch sk buff ip=

_ ,1,0, , , , }fm selector bypass discard apply The Pi-

calculus expression of the process I is:

() .(8 _ , _ .[_ 0]

9 _ , _ .[_ 1]

. 10 _ .). 11 _

. .(12 _ ,

[

def

I ini localDeliver ch sk buff ip fm ip fm

ifPolicy ch sk buff ip fm ip fm

ipDefrag ch sk buff ifPoilcy ch sk buff

policyCheck ch sk buff selector

selector bypas

= < > =

+ < > =

< > < >

< >

=

　　　

　　　

　　　　

　　　　]. 13 _ ,

[]. 14 _ ,

[])

s byPass ch sk buff selector

selector discard Discard ch sk buff selector

selector apply applyIn

+ < >

= + < >

=

　　　　

　　　　

The process localDeliver receives packets to the
local.Ip_mf is a message used to determine whether the IP
packet is fragmented. If ip_mf is 1, that means this packet is
one of the fragments. Along channel ch9,reach process
ipDefrag to restruct IP packets, and then along channel
ch10,go into the process ifPolicy.If ip_mf is 0,along channel
ch8 get to the process ifPolicy.The message sk_buff is then
sent to the process policyCheck along channel ch11.Selector is
a policy selector. There are three types: bypass, discard, and
apply whose corresponding policy types are untreated,
discarded, and used.They enter into process byPass, Discard
and applyIn along channel ch12, ch13, ch14 .

Figure 5. Channel graph of atomic operation on the packet forwarding

module

In Figure 5, for the internal operation of the process
forwardPackage F, it can be refined to
ipForward,policyCheck,applyOut and other atomic

operations.

� The channels and messages associated with the process F

can be represented as � { 17, 18, _ }inf ch ch sk buff= .The

Pi-calculus expression of the process I is:

�() . 17 _ . . 18

_ .

def

F inf ipForward ch sk buff policyCheck ch

sk buff applyOut

= < >

< >　　　　

The leading role of process F is to receive the IPSec
encapsulation of non-local packets from the data link
layer.First,the packet is forwarded by the process
loopForwardIn and enters the process ipForward to achieve IP
packet forwarding. And then enter into the process
policyCheck along channel ch17.If using IPSec protocol,enter
into the process applyOut along channel ch18 for IPSec
outgoing process.

In Figure 6,for the internal operation of the
processoutputPackage O, it can be refined to
ipQueueXmit,insertRouteOut,applyOut and other atomic
operations.

Figure 6. Channel graph of atomic operation on the output process module

ch9

ch8

ch1

0

ch11

ch14 ch13 ch12

23.ifPolicy

21.localDeliver

22.ipDefrag

24.policyCheck

27.applyIn 26.Discard 25.byPass

ch21

43.applyOut

42.insertRouteOut

41.ipQueueXmit

ch23

ch22

33.applyOut

32.policyCheck

31.ipForward

ch17

ch18

� The channels and messages associated with the process O
can be represented as
� { 21, 22, 23, _ , _ , , }ino ch ch ch sk buff skb dst yes no= The

Pi-calculus expression of the process O is:

�() . _ (21 _ ,

_ .[_] 22 _

, _ .[_] . 23

_ .)

def

O ino ipQueueXmit new skb dst ch sk buff skb

dst skb dst yes applyOut ch sk buff

skb dst skb dst no insertRouteOut ch

sk buff applyOut

= <

> = + <

> =

< >

　

　　　　

　　　　

　　　　

The role of process O is to operate on the packets passed
down from the transport layer,which involves the routing
lookup and other operations.

In Figure 7,for the internal operation of the process
encapPackage E, it can be refined to
loopForwardOut,IPSecOutput,ipOutput and other atomic
operations.

� The channels and messages associated with the process E

can be represented as � { 25, 26, _ }ine ch ch sk buff= .The

Pi-calculus expression of the process E is:

�() . 25 _ . Sec .

26 _ .

def

E ine loopForwardOut ch sk buff IP Output

ch sk buff ipOutput

= < >

< >　　　　

The main role of process E is to encapsulate the IPSec
protocol packets in the forwarding module and IPSec packets
from the transport layer,and encapsulate them into ordinary IP
packets to the data link layer.

Figure 7. Channel graph of atomic operation on the encapsulation module

IV. IMPLEMENTATION OF PICT AND EXPERIMENT ANALYSIS

The Pict [5] is a programming language based on Pi-
calculus,which we can use to implement the model established
by Pi-calculus.The compiling environment for Pict language
was first given by Benjamin C. Pierce in 1998 and published in
2000 as "Pict: A Programming Language based on the Pi-
Calculus".Pict has its own unique way of handling,and it is
very close to the idea of Pi-calculus[6].

For example, in the channel graph of IPSec parallel
model(Figure 2),we find that function loopForwardIn involves

many channels and can receive and transmit messages in
parallel,which is the strength of Pict.Pict uses "|" to describe
parallel.Specific code is as follows:

In the model there can be a number of parallel processes
and it can be easily expressed by Pict as well. The parallel
execution between functions can be expressed as:

In this experiment,we use C to describe IPSec protocol
serial framework and Pict to describe parallel
framework.Through the experiment ,we tested the real
time,user time,sys time and memory using size of runing a
period of time C and Pict program.The experimental data and
results are as follows:

TABLE I. COMPARSION OF REAL TIME（S）

Number Pict C

1 0.059 0.124

2 0.058 0.114

3 0.087 0.103

4 0.059 0.100

5 0.086 0.101

6 0.059 0.104

7 0.087 0.101

8 0.059 0.107

9 0.085 0.102

10 0.058 0.118

Figure 8. Comparison of real time

53.ipOutput

52.IPSecOutput

51.loopForwardOut

ch25

ch26

run (ipQueueXmit![ch20 ch21 ch22] | packageCheck![ch0]|
ipForward![ch6 ch17])

def loopForwardIn[ch3:^Int ch5:^Int ch6:^Int ch7:^Int]=

 (ch3?i = print!"receive1"

 | ch5?i = print!"receive2"

 | ch6!1 | print!"send1"

 | ch6!1 | print!"send2")

TABLE II. COMPARSION OF USER TIME（S）

Number Pict C

1 0.040 0.022

2 0.014 0.020

3 0.013 0.018

4 0.018 0.004

5 0.031 0.013

6 0.015 0.006

7 0.021 0.006

8 0.019 0.018

9 0.012 0.008

10 0.019 0.013

Figure 9. Comparison of user time

TABLE III. COMPARSION OF SYS TIME（S）

Number Pict C

1 0.014 0.070

2 0.038 0.053

3 0.042 0.051

4 0.037 0.063

5 0.030 0.054

6 0.038 0.061

7 0.036 0.061

8 0.036 0.053

9 0.043 0.059

10 0.035 0.072

Figure 10. Comparison of sys time

 We use performance analysis tools nmon to contrast to the

system memory usage when C and Pict program running for a

period of time.In Figure 11 which indicates the memory

remaining,the first trough is the execution of the C program,

and the second trough is the execution of the Pict program.

Figure 11. Remaining memory of running C and Pict Program

In the comparison experiment of runtime,combining the
above figures and tables,we find that the real time and sys time
C program uses are longer than Pict program.As for user
time,the two is not obviously superior.This indicates the IPSec
parallel framework model based on Pi-calculus is shorter time
using and more efficient in the actual running of the program.

In the contrast experiment on memory use,remaining
memory(memfree)of C program is lower.That is to say,when
having the same memory,the memory C program using is
higher than Pict program does.This proves that the IPSec
parallel framework model based on Pi-calculus has lower
memory usage and lower cost in multiple runs.It should be
noted that memory usage of the Pict program done is not fully
restored to the level bebore it is executed,because after the
execution of a Pict executable,it does not automatically
stop,needing a command to terminate.

V. CONCLUSION

In this paper, we combine the field of network information
security and Pi- calculus to improve the framework of IPSec
protocol and define a parallel model of IPSec protocol
framework based on Pi -calculus. It is proved that compared
with the traditional IPSec protocol framework,the parallel one
not only has an improvement on running time,but less memory
in the memory usage.

 REFERENCES

[1] Yang Xiaohua.Analysis and Research of IPv6 Security
Architecture[J].Computer Knowledge and Technology,2010(8)

[2] Milner, Robin. Functions as Processes.In Research Report 1154,
INRIA,SophiaAn-tipolis. Final version. in J. Mathem. Struct.In
Computer Science.1990.

[3] Zhu Xiaowei,Zhou Haigang,Liu Jun.Formal analysis and improvement
of IKEv2 against man-in-the-middle attack[J].Computer Engineering
and Applications,2009(15):126

[4] Milner Robin. Communicating and Mobile Systems: The Pi-
Calculus,Cambridge University Press, Cambridge,UK,1999.

[5] Benjamin C.Pierce.Programming in the Pi-Calculus[M].December
9,1994.

[6] Liu Siqi.A New Distributed Communication Model Based on Pi
Calculus[D].Jilin University,2015

